

Instrukcja użytkownika

P Instrukcja użytkownika

AirVision One

Spis treści

1.	Inforr	macje ogólne	9
	1.1.	Opis sterownika	9
	1.2.	Lista wejść i wyjść \ldots	10
	1.3.	Wersje językowe	11
2.	Inforr	macje o bezpieczeństwie	12
3.	Opis z	złączy	13
4.	Dane	techniczne	16
	4.1.	Parametry elektryczne	16
	4.2.	Parametry mechaniczne	16
	4.3.	Warunki pracy	16
5.	Interf	iejs użytkownika	18
	5.1.	Front sterownika	18
6.	Interf	iejs graficzny użytkownika	20
	6.1.	Widok główny	20
	6.2.	Skróty widoku głównego	20
	6.3.	lkona statusu sprężarki	21
	6.4.	lkony błędów i ostrzeżeń	21
	6.5.	Poruszanie się po interfejsie graficznym użytkownika	22
		6.5.1. Poruszanie się po widoku głównym	22
		6.5.2. Podstawowe rodzaje menu	23
		6.5.3. Pasek boczny	24
		6.5.4. Ekran logowania	25
		6.5.5. Konfigurowanie parametrów	25
		6.5.6. Komunikaty ekranowe	27
	6.6.	Główne Menu	27
		6.6.1. Wyszukaj parametr	28
		6.6.2. Informacje	29
		6.6.3. Czujniki	30
		6.6.4. Liczniki	31
		6.6.5. Zdarzenia	32
		6.6.6. Statystyki	32
7.	Prefe	rencje użytkownika	33
	7.1.	Dostosowanie jasności wyświetlacza	34
	7.2.	Konfiguracja wygaszacza ekranu	34
	7.3.	Jednostki	34

	7.4.	Język sterownika	34
	7.5.	Ustawienia daty i godziny	35
	7.6.	Nazwa sprężarki	35
8.	Paran	netry użytkownika	36
	8.1.	Zmiana hasła użytkownika	39
	8.2.	Wyszukiwanie parametrów użytkownika	40
9.	Algor	ytm pracy	41
	9.1.	Schemat algorytmu pracy w konfiguracji Gwiazda-Trójkąt	41
		9.1.1. Parametry czasowe pracy sprężarki	42
	9.2.	Schemat algorytmu pracy w konfiguracji Falownik	44
		9.2.1. Parametry czasowe pracy sprężarki	45
		9.2.2. Regulator PID	46
		9.2.3. Ciśnienie zadane	46
	9.3.	Schemat algorytmu pracy w konfiguracji Rozruch Bezpośredni	47
		9.3.1. Parametry czasowe pracy sprężarki	47
	9.4.	Bieg jałowy	48
		9.4.1. Adaptacyjny bieg jałowy (AutoTlse)	49
	9.5.	Metoda kontroli dekompresji	49
10.	Ustaw	vienia pracy sprężarki i sterownika	50
	10.1.	Tryby pracy	50
		10.1.1. Tryb automatyczny (AUTO)	50
		10.1.2. Tryb ciągły (CONST)	50
	10.2.	Tryby zdalne	51
		10.2.1. Tryb sterowania lokalnego (LOCAL)	51
		10.2.2. Tryb sieciowy NET	51
		10.2.3. Tryb sterowania zdalnego REM	51
		10.2.4. Konfiguracja trybu zdalnego REM	52
		10.2.5. Tryb sterowania zdalnego RVM	52
		10.2.6. Konfiguracja trybu zdalnego RVM	52
		10.2.7. Funkcja zdalnego startu	52
		10.2.8. Konfiguracja funkcji zdalnego startu	53
		10.2.9. Różnice pomiędzy trybem zdalnym REM i RVM, a funkcją zdalnego startu	53
11.	Inne f	funkcje	54
	11.1.	Funkcja wentylatora (chłodzenie sprężarki)	54
	11.2.	Funkcja osuszacza	54
	11.3.	Funkcja spustu kondensatu	55
		11.3.1. Konfiguracja funkcji spustu kondensatu	55

	11.4.	Funkcja Auto restartu	55
		11.4.1. Konfiguracja funkcji auto restartu	55
	11.5.	Funkcja podgrzewacza	56
		11.5.1. Podgrzewacz 1	56
		11.5.2. Podgrzewacz 2	56
		11.5.3. Dogrzewanie biegiem jałowym	56
	11.6.	Przywracanie i zapisywanie ustawień	57
12.	Funko	e je diagnostyczne	58
	12.1.	Diagnostyka wejść/wyjść	58
13.	Liczni	iki serwisowe	59
	13.1.	Restartowanie liczników serwisowych	60
14.	Statys	styki	60
15.	Plano	wanie pracy	62
	15.1.	Konfiguracja zdarzenia	62
	15.2.	Algorytm planowania pracy	64
16.	Praca	sieciowa	65
	16.1.	Widok pracy sieciowej	65
	16.2.	Uruchomienie pracy sieciowej i zmiana nastaw sterowników podrzędnych	66
	16.3.	Błędy i zdarzenia w pracy sieciowej	66
	16.4.	Algorytm pracy sekwencyjnej (SEQ)	66
	16.5.	Algorytm pracy kaskadowej (CAS)	67
	16.6.	Konfiguracja sterownika nadrzędnego	68
	16.7.	Konfiguracja sterownika podrzędnego	71
17.	Web S	Serwer (System wizualizacji)	73
	17.1.	Web serwer - Opis interfejsu graficznego	73
	17.2.	Web serwer - Pulpit AirVision One	75
	17.3.	Web serwer - Czujniki	76
	17.4.	Web serwer - Zużycie	76
	17.5.	Web serwer - Komunikaty	76
	17.6.	Web serwer - Liczniki serwisowe	76
	17.7.	Web serwer - Praca planowana	76
	17.8.	Web serwer - Informacje	77
	17.9.	Uruchomienie i konfiguracja połączenia z web serwerem	77
18.	Ostrz	eżenia i błędy	79
	18.1.	Lista ostrzeżeń sterownika AirVision One	79
	18.2.	Informacje o ostrzeżeniach falownika DANFOSS	82
	18.3.	Informacje o ostrzeżeniach falownika YASKAWA	83

19.	Wymia	ary sterownika	94
	18.11.	Błędy falownika ABB	92
	18.10.	Błędy falownika Inovance	91
	18.9.	Błędy falownika Delta	90
	18.8.	Błędy falownika YASKAWA	89
	18.7.	Błędy falownika DANFOSS	88
	18.6.	Lista błędów sterownika AirVision One	85
	18.5.	Informacje o ostrzeżeniach falownika ABB	84
	18.4.	Informacje o ostrzeżeniach falownika Delta	84

Spis tabel

1	Opis wyprowadzeń wyiść cyfrowych (X1, X2 DIGITAL OUTPUTS)	13
2	Opis wyprowadzeń złaczy interfeisów komunikacyjnych (X3, X4)	13
3	Opis wyprowadzeń złacza RS-485 ISO (X5)	14
4	Opis wyprowadzeń weiść cyfrowych (X6 DIGITAL INPUTS)	14
5	Opis wyprowadzeń wejść analogowych (X7 ANALOG INPLITS)	14
6	Opis wyprowadzeń wejścia przekładnika pradowego 54 (X8 MOTOR CURRENT INPLIT)	14
7	Onis wyprowadzeń złącza RS-185 (X9)	15
י פ	Opis wyprowadzeń zasilania ($Y10$ POWER)	15
0		10
9		10
10		10
11		16
11	Dopuszczalne warunki pracy	17
12	Opis działania diod	18
13	Opis działania przycisków	18
13	Opis działania przycisków	19
14	Lista skrótów widoku głównego	21
17	Parametry z zakładki "Zużycie"	33
18	Lista parametrów użytkownika	36
18	Lista parametrów użytkownika	37
18	Lista parametrów użytkownika	38
18	Lista parametrów użytkownika	39
19	Lista parametrów użytkownika	40
20	Lista parametrów czasowych pracy sprężarki	43
21	Lista parametrów czasowych pracy sprężarki	45
22	Lista parametrów czasowych pracy sprężarki	48
23	Parametry z zakładki "Statystyki"	60

24	Lista ostrzeżeń sterownia AirVision One	79
24	Lista ostrzeżeń sterownia AirVision One	80
24	Lista ostrzeżeń sterownia AirVision One	81
24	Lista ostrzeżeń sterownia AirVision One	82
25	Lista ostrzeżeń falownika DANFOSS	82
25	Lista ostrzeżeń falownika DANFOSS	83
26	Lista ostrzeżeń falownika YASKAWA	84
27	Lista ostrzeżeń falownika Delta	84
28	Lista ostrzeżeń falownika ABB	84
28	Lista ostrzeżeń falownika ABB	85
29	Lista błędów sterownika AirVision One	85
29	Lista błędów sterownika AirVision One	86
29	Lista błędów sterownika AirVision One	87
30	Lista błędów falownika DANFOSS	88
30	Lista błędów falownika DANFOSS	89
31	Lista błędów falownika YASKAWA	89
31	Lista błędów falownika YASKAWA	90
32	Lista błędów falownika Delta	90
32	Lista błędów falownika Delta	91
33	Lista błędów falownika Inovance	91
33	Lista błędów falownika Inovance	92
34	Lista błędów falownika ABB	92
34	Lista błędów falownika ABB	93

Spis rysunków

1	Wygląd sterownika AirVision One	9
2	Wyprowadzenia elektryczne sterownika	13
3	Panel frontowy sterownika AirVision One	18
4	Widok główny z podziałem na sekcje	20
5	Zakładka aktywnych zdarzeń dostępna za pomocą szybkiego przejścia między stronami	22
6	Główne menu sterownika AirVision One	23
7	Przykładowe menu matrycowe	23
8	Przykładowe menu typu lista	24
9	Pasek boczny z widocznym wskazaniem ciśnienia w sieci oraz ikonami błędu, ostrze-	
	żenia oraz przycisku awaryjnego	24
10	Ekran autoryzacji	25
11	Kafelki z podgrupami parametrów na przykładzie parametrów pracy	25

12	Kafelki z parametrami na przykładzie podgrupy parametrów konfiguracji pracy sieciowej	26
13	Klawiatura ekranowa na przykładzie minimalnej temperatury oleju do startu \ldots .	26
14	Przykład listy	27
15	Przykład komunikatu ekranowego	27
16	Główne menu	28
17	Wybór poziomu dostępu	29
18	Menu wyszukiwania parametrów	29
19	Zakładka "Informacje"	30
20	Podgląd czujników	31
21	Zakładka "Liczniki serwisowe"	32
22	Zakładka Historii zdarzeń	32
23	Zakładka statystyk	33
24	Algorytm sterowania silnikiem	41
25	Widok menu z ustawieniami parametrów czasowych dla konfiguracji Gwiazda-trójkąt	42
26	Algorytm sterowania silnikiem	44
27	Widok menu z ustawieniami parametrów czasowych dla konfiguracji Falownik 🛛	45
28	Nastawy ciśnienia w sieci	46
29	Algorytm sterowania silnikiem	47
30	Widok menu z ustawieniami parametrów czasowych dla konfiguracji Rozruch Bezpo-	
	średni	48
31	Zakładka "Liczniki serwisowe"	59
32	Zakładka Statystyki	61
33	Główny widok menu "Planowanie pracy"	62
34	Przykład konfiguracji zdarzenia pracy planowanej	63
35	Przykład konfiguracji terminu aktywności zdarzenia	63
36	Widok pracy sieciowej	65
37	Menu konfiguracji portu RS-485	68
38	Menu konfiguracji pracy sieciowej 1/3	69
39	Menu konfiguracji pracy sieciowej 2/3	69
40	Menu konfiguracji pracy sieciowej 3/3	70
41	Menu pracy sieciowej	70
42	Menu konfiguracji sprężarki podrzędnej 1	71
43	Menu konfiguracji portu RS-485	71
44	Menu konfiguracji trybu zdalnego	72
45	Boczny pasek informacyjny web serwer	74
46	Górny pasek informacyjny web serwer	74
17	Web conversided pulpity	75

48	Menu konfiguracji adresu IP	77
49	Zakładka "Informacje" z widocznym adresem IP oraz MAC	78
50	Rysunek obudowy sterownika	94

9

1. Informacje ogólne

Rysunek 1: Wygląd sterownika AirVision One

1.1. Opis sterownika

AirVision One to sterownik przeznaczony dla sprężarek o mocy do 22 kW. Sterownik może współpracować ze sprężarkami działającymi w konfiguracji gwiazda-trójkąt lub wyposażonymi w falownik.

Cechy sterownika:

- Wyświetlacz kolorowy o przekątnej 3.5"
- Wbudowany web serwer
- Tworzenie statystyk
- Funkcja nadzoru: ciśnienia w sieci, ciśnienia oleju, temperatury oleju, silnika, oraz natężenia prądu silnika.
- Obsługa podgrzewaczy oleju, osuszacza powietrza oraz spustu kondensatu
- Możliwość dowolnej konfiguracji wejść oraz wyjść sterownika
- Funkcja automatycznego restartu pracy
- Sterowanie falownikiem z wykorzystaniem protokołu Modbus RTU (wybór standardowego falownika firm Yaskawa, Danfoss, ABB , Inovance oraz Delta)
- Rozruch w trybie gwiazda-trójkąt lub bezpośredni (w przypadku sprężarek bez falownika)
- Menu parametrów serwisowych oraz użytkownika z kontrolą dostępu
- Liczniki serwisowe oraz liczniki czasu pracy
- Tryb pracy sieciowej obsługujący do 4 sprężarek
- Tryb pracy zdalnej (za pośrednictwem wejścia cyfrowego)

• Planowanie pracy z podziałem na zdarzenia cykliczne oraz jednorazowe, łącznie do 5 zdarzeń

compressoren 10

Możliwość aktualizacji oprogramowania przez port USB

1.2. Lista wejść i wyjść

- Sterownik wyposażony jest w 2 wejścia RTD do obsługi rezystancyjnych czujników temperatury i posiada możliwość niezależnej konfiguracji każdego z wejść do wybranego czujnika (PT100, PT1000, KTY84, PTC). Z wykorzystaniem wejść temperaturowych RTD sterownik może kontrolować następujące parametry:
 - Temperatura oleju
 - Temperatura silnika
- 2. Sterownik wyposażony jest w 2 wejścia analogowe do obsługi czujników 4-20 mA. Zakres pomiarowy może być skonfigurowany z poziomu sterownika. Obsługiwane parametry to:
 - Ciśnienie w sieci
 - Ciśnienie oleju
- Sterownik wyposażony jest w 1 wejście analogowe do obsługi przekładnika prądowego w standardzie 5 A. Prąd uzwojenia pierwotnego może być dowolnie skonfigurowany z poziomu sterownika.
- 4. Sterownik wyposażony jest w 6 wejść cyfrowych do obsługi czujników lub sygnałów binarnych z możliwością konfiguracji domyślnej logiki (normalnie otwarty/normalnie zamknięty) dla każdego wejścia niezależnie. Obsługiwane czujniki lub sygnały to:
 - Czujnik ssania
 - Gotowość osuszacza
 - Zdalny start-stop
 - Zdalny sygnał dociążenia-odciążenia
 - Zatrzymanie awaryjne
 - Asymetria zasilania faz
 - Sygnał błędu kolejności faz
 - Sygnał błędu termika
 - Sygnał błędu filtra powietrza
 - Sygnał błędu filtra oleju
 - Sygnał błędu separatora
 - Sygnał błędu AFOFSEP (wspólny błąd dla separatora, filtra oleju lub filtra powietrza)
 - Sygnał błędu wentylatora

Ρ

- 5. Sterownik wyposażony jest w 7 konfigurowalnych wyjść cyfrowych (przekaźnikowych), w tym:
 - 3 wyjścia ze wspólnym potencjałem
 - 3 wyjścia z niezależnym potencjałem
 - 1 wyjście NO/NC z niezależnym potencjałem

Funkcje, które mogą być skonfigurowane na każdym z wyjść to:

- Główne zasilanie
- Gwiazda
- Trójkąt
- Zawór Y
- Spust kondensatu
- Wentylator
- Osuszacz
- Podgrzewacz 1
- Podgrzewacz 2
- Ostrzeżenie
- Błąd
- Stan ostrzeżenia lub błędu
- Gotowy
- Pracuje
- Sprężanie
- Przegląd
- 6. Sterownik wyposażony jest w 1 gniazdo USB oraz 1 gniazdo Ethernet

1.3. Wersje językowe

Sterownik AirVision One posiada 7 wersjii językowych:

- Polską
- Angielską
- Niderlandzką
- Hiszpańską
- Francuską
- Niemiecką
- Rosyjską

Istnieje możliwość przygotowania innych wersji językowych w porozumieniu z producentem sterownika.

2. Informacje o bezpieczeństwie

Ρ

Przed montażem i uruchomieniem sterownika należy zapoznać się z instrukcją obsługi oraz warunkami gwarancji. Nieprawidłowy montaż oraz obsługa niezgodna z instrukcją spowodują utratę gwarancji.

Wszelkie prace przyłączeniowe oraz montażowe muszą być wykonywane przy odłączonym napięciu zasilania.

Prace montażowe powinny być wykonywane przez autoryzowany serwis lub uprawniony personel.

Aby zachować zgodność z normami bezpieczeństwa, zacisk PE sterownika powinien być podłączony do przewodu ochronnego PE.

Eksploatacja sterownika bez zainstalowanej obudowy jest niedozwolona, ponieważ grozi to porażeniem prądem.

Narażanie sterownika na zalanie wodą lub eksploatacja w warunkach nadmiernej wilgotności może spowodować jego uszkodzenie.

Przed uruchomieniem należy sprawdzić poprawność podłączenia, zgodnie ze schematem połączeniowym zamieszczonym w instrukcji obsługi.

Przed uruchomieniem sterownika należy sprawdzić, czy napięcie zasilania spełnia wymagania zamieszczone w instrukcji obsługi.

Wszelkie naprawy mogą być dokonywane tylko przez serwis producenta. Naprawa wykonana przez osobę nieupoważnioną skutkuje utratą gwarancji.

3. Opis złączy

P

Rysunek 2: Wyprowadzenia elektryczne sterownika

Tabela 1: Opis wyprowadzeń wyjść cyfrowych	ו (X1, X2 DIGITAL OUTPUTS)
--	----------------------------

Nazwa	Opis
REL1	Para wyjść konfigurowalnego przekaźnika 1
REL2	Para wyjść konfigurowalnego przekaźnika 2
REL3	Para wyjść konfigurowalnego przekaźnika 3
COM 4-6	Wspólne wyprowadzenie wyjść przekaźnikowych od 4 do 6
REL4	Konfigurowalne wyjście przekaźnikowe 4
REL5	Konfigurowalne wyjście przekaźnikowe 5
REL6	Konfigurowalne wyjście przekaźnikowe 6
REL7 COM	Konfigurowalne wyjście przekaźnika 7
REL7 NO	Styk zwierny (normalnie otwarty) przekaźnika 7
REL7 NC	Styk rozwierny (normalnie zamknięty) przekaźnika 7

Tabela 2: Opis wyprowadzeń złączy interfejsów komunikacyjnych (X3, X4)

Nazwa	Opis
ETHERNET	Złącze Ethernet (RJ45)
USB	Złącze USB

Tabela 3: Opis wyprowadzeń złącza RS-485 ISO (X5)

Nazwa	Opis
GND	Masa izolowanego interfejsu RS-485
В	Linia odwracająca izolowanego interfejsu RS-485
А	Linia nieodwracająca izolowanego interfejsu RS-485

Tabela 4: Opis wyprowadzeń wejść cyfrowych (X6 DIGITAL INPUTS)

Nazwa	Opis
+24V	Wyjście wewnętrznego napięcia odniesienia
DI1	Konfigurowalne wejście cyfrowe 1
DI2	Konfigurowalne wejście cyfrowe 2
DI3	Konfigurowalne wejście cyfrowe 3
DI4	Konfigurowalne wejście cyfrowe 4
DI5	Konfigurowalne wejście cyfrowe 5
DI6	Konfigurowalne wejście cyfrowe 6

Tabela 5: Opis wyprowadzeń wejść analogowych (X7 ANALOG INPUTS)

Nazwa	Opis
+24V	Zasilanie wejścia analogowego 1
Al1	Wejście analogowe 1
+24V	Zasilanie wejścia analogowego 2
AI2	Wejście analogowe 2
GND	Zacisk masy
GND	Masa rezystancyjnego czujnika temperatury 1
RTD1	Wejście rezystancyjnego czujnika temperatury 1
GND	Masa rezystancyjnego czujnika temperatury 2
RTD2	Wejście rezystancyjnego czujnika temperatury 2

Tabela 6: Opis wyprowadzeń wejścia przekładnika prądowego 5A (X8 MOTOR CURRENT INPUT)

Nazwa	Opis
GND	Masa wejścia analogowego MC1
MC1	Wejście analogowe MC1 do pomiaru prądu silnika

Tabela 7: Opis wyprowadzeń złącza RS-485 (X9)

Nazwa	Opis
А	Linia nieodwracająca interfejsu RS-485
В	Linia odwracająca interfejsu RS-485
GND	Masa interfejsu RS-485

Tabela 8: Opis wyprowadzeń zasilania (X10 POWER)

Nazwa	Opis
PE	Złącze PE
VAC	Napięcie zasilania sterownika (przemienne 24 V)
VAC	Napięcie zasilania sterownika (przemienne 24 V)

Sterownik jest wyposażony w zaciski uziemiające obudowę, które znajdują się przy złączu X10.

4. Dane techniczne

4.1. Parametry elektryczne

Parametr	Wartość
Napięcie zasilania	24 VAC 50/60 Hz +/-10%
Pobór mocy	Do 10 W
Przekaźniki - maksymalne przełączane napięcie	250 VAC
Maksymalna suma obciążeń grupy przekaźników REL4, 5, 6	4 A
(rezystancyjna)	
Maksymalne obciążenie każdego z przekaźników REL1, 2, 3	3 A
(rezystancyjne)	
Maksymalne obciążenie przekaźnika REL7 (rezystancyjne)	3 A
Maksymalne obciążenie przekaźników (indukcyjne)	0,5 A
Maksymalny prąd w pętli prądowej	28 mA
Maksymalny pobór prądu z wewnętrznego napięcia odnie-	250 mA
sienia	
Wejścia cyfrowe – napięcie minimalne	-0,5 VDC
Wejścia cyfrowe – napięcie maksymalne	24,7 VDC
Wejścia analogowe – napięcie minimalne	-0,5 VDC

Tabela 9: Lista parametrów elektrycznych

4.2. Parametry mechaniczne

Wejścia analogowe - napięcie maksymalne

Tabela 10: Parametry mechaniczne

24,7 VDC

Parametr	Wartość
Wymiary obudowy	176 x 106 x 38 mm
Waga (bez opakowania)	465 g
Montaż	Zaczepy

4.3. Warunki pracy

Tabela 11: Dopuszczalne warunki pracy

Parametr	Wartość
Temperatura pracy	-15 ÷ 50°C

Tabela 11: Dopuszczalne warunki pracy

Parametr	Wartość
Temperatura przechowywania	-20 ÷ 70°C
Wilgotność względna	10 ÷ 90%, bez kondensacji

5. Interfejs użytkownika

5.1. Front sterownika

Na panelu frontowym znajdują się:

- 9 przycisków
- 2 diody informujące o statusie sprężarki
- Ekran wyświetlający interfejs graficzny użytkownika

	AIRPRESS C	compressoren	START
() (min. pkt. pracy max. space 8.3 bar space 8.3 bar	23:23 15.06.2023 Temp. oleju 23 °C Zzas pracy 765 h Śr. obciążenie 83 % orężanie	STOP
Air	/ision One	2	٩

Tabela 12: Opis działania diod

Dioda	Kolor	Zachowanie diody
START	Zielona	Stałe - silnik pracuje (sprężanie, bieg jałowy)
		Pulsacyjne - trwa rozruch silnika
STOP	Czerwona	Stałe - silnik nie pracuje
		Pulsacyjne - sprężarka w trakcie zatrzymywania lub oczekiwania
		na spadek ciśnienia

Tabela 13: Opis działania przycisków

Przycisk	Funkcja
START	Zezwolenie na pracę sprężarki
STOP	Zatrzymanie pracy sprężarki
Góra	Strzałka nawigacji po interfejsie graficznym
Dół	Strzałka nawigacji po interfejsie graficznym

Przycisk	Funkcja
Prawo	Strzałka nawigacji po interfejsie graficznym
Lewo	Strzałka nawigacji po interfejsie graficznym
ОК	Zatwierdzenie akcji
Cofnij	Cofanie do poprzedniego poziomu interfejsu graficznego
Menu	Przejście do głównego menu

Tabela 13: Opis działania przycisków

20

6. Interfejs graficzny użytkownika

6.1. Widok główny

Rysunek 4: Widok główny z podziałem na sekcje

Opis poszczególnych sekcji:

- 1. Wskazanie ciśnienia w sieci, nastawy ciśnienia
- 2. Oznaczenie zakładki skrótów dostępnych z widoku głównego
- 3. Ikony aktywnych błędów oraz ostrzeżeń
- 4. Ikona aktualnego stanu sprężarki
- 5. Ikona trybu pracy
- 6. Aktualna data i godzina
- 7. Pole wyświetlające komunikaty tekstowe dotyczące statusu sprężarki
- 8. Pole wyświetlające podstawowe parametry pracy sprężarki

6.2. Skróty widoku głównego

Sterownik AirVision One, ma możliwość szybkiego przechodzenia z widoku głównego do wybranych zakładek interfejsu użytkownika, poprzez wykorzystanie przycisków ze strzałkami w lewo i w prawo. Kropki w lewej górnej części wyświetlacza informują o tym, który z dostępnych poprzez skróty widok jest obecnie wybrany.

Tabela	14: Lista	skrótów	widoku	ałównego
				9.0

Nazwa zakładki	Pozycja względem widoku głównego
Widok główny	-
Aktywne zdarzenia	<
Czujniki	>
Widok pracy sieciowej*	>>

*-Skrót widoczny tylko dla włączonego trybu sterownika nadrzędnego.

6.3. Ikona statusu sprężarki

lkona statusu widoczna na pasku bocznym interfejsu użytkownika informuje o aktualnym statusie sprężarki.

6.4. Ikony błędów i ostrzeżeń

Ikony błędów i ostrzeżeń informują o błędach i ostrzeżeniach, które występują obecnie na sterowniku lub wystąpiły w przeszłości, mogą różnić się wizualnie, w zależności od miejsca na interfejsie graficznym.

Ikona aktywnego błędu (Pasek boczny)

Ikona aktywnego błędu (Wygaszacz ekranu)

Ikona błędu (Zdarzenia)

Ikona wyłącznika awaryjnego

Ikona aktywnego ostrzeżenia (Wygaszacz ekranu)

Ikona ostrzeżenia (Zdarzenia)

6.5. Poruszanie się po interfejsie graficznym użytkownika

Obsługa interfejsu graficznego użytkownika odbywa się za pomocą zestawu przycisków umieszczonego na panelu frontowym sterownika.

Przyciski strzałek pozwalają na poruszanie się pomiędzy dostępnymi polami w danych menu, kursor w postaci niebieskiej ramy wskazuje, które z pól jest obecnie wybrane.

Wybieranie określonego pola jest poprzez zatwierdzenie wyboru przyciskiem "OK", w momencie kiedy kursor wskazuje dane pole.

Przycisk z symbolem strzałki zakrzywionej o 180 stopni to przycisk "Cofnij", pozwala na cofnięcie się poprzedniego widoku interfejsu graficznego, jego wielokrotne wciśnięcie (ilość wciśnięć zależna jest od poziomu zagnieżdżenia określonego menu) zawsze spowoduje przeniesienie do widoku głównego.

Przycisk z symbolem trzech poziomych kresek to przycisk "Menu", jego wciśnięcie powoduje bezpośrednie przejście do menu głównego.

Bardziej szczegółowe opisy zawarte zostały w rozdziałach dedykowanych poszczególnym funkcjom.

6.5.1. Poruszanie się po widoku głównym

Widok główny sterownika pozwala na szybkie przejście do zakładek takich jak "Aktywne zdarzenia", "Czujniki" oraz "Widok pracy sieciowej", poprzez wykorzystanie przycisków ze strzałkami lewo i prawo.

"Widok pracy sieciowej" jest widoczny tylko jeżeli sterownik jest skonfigurowany jako nadrzędny.

Rysunek 5: Zakładka aktywnych zdarzeń dostępna za pomocą szybkiego przejścia między stronami

Rysunek 6: Główne menu sterownika AirVision One

6.5.2. Podstawowe rodzaje menu

Interfejs użytkownika dzieli się na 2 podstawowe typy menu (zakładek), różniące się sposobem poruszania po nich.

Pierwszym typem jest menu matrycowe, nawigacja w tym przypadku odbywa się za pomocą przycisków lewo prawo oraz góra dół.

Drugim typem jest menu w postaci listy, po której poruszanie możliwe jest za pomocą przycisków góra i dół. W przypadku jeżeli parametrów na liście jest więcej niż mieści się jednocześnie na wyświetlaczu, w lewym górnym rogu pojawia się numeracja podstron na których znajdują się parametry. Przyciski lewo prawo pozwalają na szybkie przeniesienie do następnej strony.

Contraction Contractic Con	we
Licznik przeglądu generalnego	WYŁ.
Licznik wymiany oleju	i 12.01.2025 2000 h
Licznik filtra oleju	2000 h
Licznik filtra powietrza	2000 h
Licznik separatora	2000 h
	 Licznik i serwiso Licznik przeglądu generalnego Licznik wymiany oleju Licznik filtra oleju Licznik filtra powietrza Licznik separatora

Rysunek 7: Przykładowe menu matrycowe

Rysunek 8: Przykładowe menu typu lista

6.5.3. Pasek boczny

Prostokątny pasek po lewej stronie ekranu jest widoczny w każdym miejscu interfejsu graficznego użytkownika, pozwala to na ciągły podgląd najważniejszych parametrów sprężarki.

Lista informacji jakie wyświetlają się na pasku bocznym:

- Aktualne ciśnienie w sieci
- Status silnika
- Ikona aktywnego błędu
- Ikona aktywnego ostrzeżenia
- · Ikona przycisku bezpieczeństwa
- numeracja stron na liście

	Parametry użytkownika				
▲	1	2	3	Hasło użytkownika	
	4	5	6		
٢	7	8	9		
6.4 bar		0	×	ZATWIERDŹ	

Rysunek 9: Pasek boczny z widocznym wskazaniem ciśnienia w sieci oraz ikonami błędu, ostrzeżenia oraz przycisku awaryjnego

6.5.4. Ekran logowania

Niektóre elementy interfejsu wymagają autoryzacji użytkownika lub serwisu. W celu jej dokonania należy wybrać odpowiednią ikonę poziomu dostępu, a następnie wprowadzić hasło, zatwierdzając przyciskiem "LOGIN". Wprowadzone hasło jest zakodowane pod postacią kropek, a ikona oka po prawej stronie umożliwia sprawdzenie wprowadzonego hasła. Podgląd jest widoczny tak długo, jak długo użytkownik naciska przycisk "OK".

Rysunek 10: Ekran autoryzacji

6.5.5. Konfigurowanie parametrów

Interfejs graficzny użytkownika przechowuje parametry w podgrupach, które wyświetlane są w postaci kafelków z opisami. Aby przejść do wybranej podgrupy należy wybrać kursorem obszar kafelka, a następnie nacisnąć przycisk "OK".

1/2	A Parametry pracy
	Tryby pracy
	Ciśnienie
	Parametry czasowe
•	Spust kondensatu
6.4 bar	Wentylator

Rysunek 11: Kafelki z podgrupami parametrów na przykładzie parametrów pracy

Po przejściu do wybranej podgrupy, parametry wyświetlone zostaną w formie kafelków z nazwą parametru i jego obecną wartością. Aby zmodyfikować wartość parametru, należy nacisnąć przycisk "OK", kiedy kursor znajduje się na określonym parametrze.

Symbol ołówka sygnalizuje, że określony parametr jest możliwy do zmodyfikowania. Wyjątkiem są parametry z symbolem włącznika, przy których nie ma symbolu ołówka, ale można je modyfikować.

1/3	Konfiguracja pracy sieciowej		
	Tryb zdalny	LOCAL 💋	
	Limit czasu komunikacji ze sprężarką nadrzędną	15 s 🖉	
	Praca jako sprężarka nadrzędna	WYŁ.	
	Algorytm pracy sieciowej	SEQ 🖉	
6.1 bar	Liczba sprężarek podrzędnych	3 🖉	

Rysunek 12: Kafelki z parametrami na przykładzie podgrupy parametrów konfiguracji pracy sieciowej

Konfigurowanie wybranego parametru odbywa się, w zależności od jego typu, poprzez wprowadzanie wartości z poziomu klawiatury ekranowej lub poprzez wybranie pozycji z predefiniowanej listy. Klawiatura ekranowa może się różnić w zależności od edytowanego parametru, dopuszczając wprowadzenie wartości ujemnych (poprzez użycie symbolu zmiany znaku na ujemny). Po wprowadzeniu nowej wartości parametru, operację należy zatwierdzić wybierając przycisk "ZAPISZ". Pod polem, w którym wyświetlana jest wpisana wartość, wyświetlany jest dopuszczalny zakres parametru. Aby anulować zmianę, zamiast zapisywać nową wartość, należy użyć przycisku "Cofnij".

Rysunek 13: Klawiatura ekranowa na przykładzie minimalnej temperatury oleju do startu

Innym typem parametrów, są parametry, których konfiguracja wymaga wybrania wartości z predefiniowanej listy.

Szczególnym typem takich parametrów, są parametry typu "Włącz", "Wyłącz", są oznaczone symbolem suwaka i pozwalają na zmianę wartości bez konieczności otwierania listy wyboru. Już samo wybranie takiego parametru powoduje zmianę jego wartości na odwrotną niż obecna.

6.5.6. Komunikaty ekranowe

Sterownik wyświetla komunikaty skierowane do użytkownika w prawym górnym rogu ekranu, w formie okienka z treścią komunikatu. W celu zamknięcia okna z komunikatem, należy nacisnąć dowolny z przycisków na sterowniku z wyjątkiem przycisków "Włącz" i "Wyłącz". Komunikaty te informują np. o wprowadzeniu nieprawidłowego hasła lub o postępie aktualizacji. Ich wystąpienia nie są archiwizowane w pamięci sterownika.

	Funkcja	Za niski poziom uprawnień do zmiany tego parametru
	Logika	NC
6.4 bar		

Rysunek 15: Przykład komunikatu ekranowego

6.6. Główne Menu

Aby przejść do głównego menu należy wcisnąć przycisk menu (3 poziome kreski). Następnie możliwe jest wybranie dostępnych podzakładek.

Lista podzakładek:

• Parametry użytkownika

- Parametry serwisowe
- Czujniki
- Aktywne zdarzenia
- Liczniki
- Statystyki
- Planowanie pracy
- Historia zdarzeń
- Informacje
- Wyszukaj parametr

Rysunek 16: Główne menu

6.6.1. Wyszukaj parametr

Zakładka "Wyszukaj parametr" pozwala na przejście do konkretnego parametru lub grupy parametrów poprzez podanie jego numeru w wyszukiwarce.

Pełna lista lista parametrów wraz z ich numerami jest dostępna w rozdziale o parametrach.

Rysunek 18: Menu wyszukiwania parametrów

6.6.2. Informacje

Zakładka "Informacje" zawiera podstawowe dane na temat sprężarki oraz sterownika. Znajduje się tutaj również przycisk do uruchomienia procedury aktualizacji oprogramowania sterownika.

Lista danych przechowywanych w zakładce informacje:

- Wersja oprogramowania
- Numer seryjny sprężarki
- Numer seryjny sterownika
- Informacja o producencie
- Sposób rozruchu sprężarki

- Adres IP sterownika
- Adres MAC sterownika

Rysunek 19: Zakładka "Informacje"

6.6.3. Czujniki

W zakładce "Czujniki" dostępny jest podgląd aktualnych wartości pomiarów dokonywanych przez sterownik oraz odczytanych z falownika. Podgląd jest dostępny tylko dla aktywnych czujników, skonfigurowanych w parametrach wejść oraz wyjść. Każda z wartości ma podaną jednostkę w jakiej jest wyświetlana, z wyjątkiem temperatury silnika dla czujnika PTC (w takim przypadku użytkownik może odczytać temperaturę poprawną oznaczoną symbolem "✓", lub niepoprawną oznaczoną "**X**").

Lista wartości możliwych do odczytania w zakładce czujniki:

- · Ciśnienie w sieci
- Ciśnienie oleju
- Temperatura oleju
- Temperatura silnika
- Prąd silnika
- Moc silnika
- Częstotliwość wyjściowa

Rysunek 20: Podgląd czujników

6.6.4. Liczniki

Zakładka "Liczniki" pozwala na podgląd aktualnych wartości liczników serwisowych oraz ich modyfikację. Każdy z liczników przedstawiony jest w formie kafelka zawierającego informacje o dacie następnego przeglądu i pozostałej liczbie godzin pracy. Licznik serwisowy może być skonfigurowany na obie z wcześniej wymienionych wartości lub tylko na jedną z nich. W takim przypadku wyświetla się tylko skonfigurowana wartość. Jeżeli licznik jest nieaktywny, na jego kafelku widoczna jest ikona z napisem "WYŁ."

W celu resetu licznika należy wybrać jego kafelek, a następnie wybrać parametr "RESTART". Licznik zostanie zrestartowany do wartości zdefiniowanych przez producenta sprężarki. Lista liczników może się różnić w zależności od konfiguracji sprężarki.

Lista obsługiwanych liczników:

- Licznik przeglądu generalnego
- Licznik wymiany oleju
- Licznik filtra oleju
- Licznik filtra powietrza
- Licznik separatora
- Licznik naciągu pasa
- Licznik smarowania łożysk silnika
- Licznik ogólnego przeznaczenia 1
- Licznik ogólnego przeznaczenia 2

Rysunek 21: Zakładka "Liczniki serwisowe"

6.6.5. Zdarzenia

Zakładka "Zdarzenia" pozwala na sprawdzenie historii błędów oraz ostrzeżeń które wystąpiły na sterowniku. Do każdego zdarzenia przypisywane są: data i godzina wystąpienia, treść oraz symbol. Lista archiwizuje 50 zdarzeń, a po przekroczeniu tej liczby najstarsze zdarzenia są usuwane.

Rysunek 22: Zakładka Historii zdarzeń

6.6.6. Statystyki

Sterownik AirVision One agreguje pomiary z czujników i informacje na temat pracy sprężarki oraz przedstawia je w postaci statystyk. W zakładce "Statystyki" przechowywane są informacje na temat czasu oraz cyklów pracy sprężarki. Rodzaje danych dotyczących obciążenia są różne dla sprężarek z rozruchem w układzie gwiazda-trójkąt oraz sprężarek falownikowych.

Nazwa parametru	Opis parametru		
Całkowity czas pracy	Całkowity czas pracy silnika		
Czas pracy pod obciążeniem	Całkowity czas sprężania		
Średnie obciążenie	Stosunek czasu pracy pod obciążeniem do całkowitego		
	czasu pracy		
Liczba rozruchów silnika	Całkowita liczba rozruchów silnika		
Średnia ilość rozruchów silni-	Średnia liczba rozruchów silnika na godzinę		
ka			
Liczba załączeń zaworu Y	Całkowita liczba załączeń zaworu Y		
Obciążenie 80% - 100% ^F	Całkowity czas pracy w danym przedziale obciążenia		
Obciążenie 60% - 80% ^F	Całkowity czas pracy w danym przedziale obciążenia		
Obciążenie 40% - 60% ^F	Całkowity czas pracy w danym przedziale obciążenia		
Obciążenie 20% - 40% ^F	Całkowity czas pracy w danym przedziale obciążenia		

Tabela 17: Parametry z zakładki "Zużycie"

^F-Parametr dostępny tylko dla sprężarek wyposażonych w falownik

7. Preferencje użytkownika

Użytkownik ma możliwość konfiguracji swoich preferencji w zakładce "Preferencje użytkownika": **Parametry użytkownika -> Preferencje użytkownika**. Znajduje się tam zbiór ustawień, które nie mają bezpośredniego przełożenia na pracę sprężarki, mają natomiast wpływ na komfort obsługi sterownika przez użytkownika.

Lista podzakładek:

- Wyświetlanie
- Jednostki
- Język
- Data i godzina
- Nazwa sprężarki

7.1. Dostosowanie jasności wyświetlacza

Jasność wyświetlacza w sterowniku można dostosować przechodząc do zakładki:

Parametry użytkownika -> Preferencje użytkownika -> Wyświetlanie.

Minimalny dostępny poziom jasności to 10%, maksymalny to 100%

7.2. Konfiguracja wygaszacza ekranu

Wygaszacz ekranu można włączyć lub wyłączyć przechodząc do zakładki:

Parametry użytkownika -> Preferencje użytkownika -> Wyświetlanie.

Ustawiając przełącznik "Wygaszacz ekranu" odpowiednio w pozycji "Wł." lub "Wył.". Parametr "Opóźnienie wygaszacza ekranu" definiuje liczbę sekund, po jakiej wygaszacz ekranu się włączy w przypadku bezczynności.

7.3. Jednostki

Sterownik umożliwia konfigurację jednostek, w których wyświetlane są wartości odczytane z poszczególnych czujników, konfiguracja jest dostępna w zakładce:

Parametry użytkownika -> Preferencje użytkownika -> Jednostki.

Lista jednostek temperatury:

- ۰°C
- °F

Lista jednostek ciśnienia:

- bar
- psi

7.4. Język sterownika

W celu wybrania innej wersji językowej interfejsu użytkownika należy przejść do zakładki:

Parametry użytkownika -> Preferencje użytkownika -> Język.

Lista wersji językowych:

- Polska
- Angielska
- Niderlandzka
- Hiszpańska
- Francuska
- Niemiecka
- Rosyjska

7.5. Ustawienia daty i godziny

W celu ustawienia poprawnej daty i godziny na sterowniku należy przejść do zakładki: **Parametry użytkownika -> Preferencje użytkownika -> Data i godzina**. Sterownik umożliwia także zmianę formatu wyświetlania godziny na 12 godzinny.

7.6. Nazwa sprężarki

Sterownik umożliwia nadanie nazwy własnej sprężarce, umożliwia to szybką identyfikację sprężarki z poziomu Web serwera. Aby wprowadzić nazwę sprężarki należy przejść do zakładki:

Parametry użytkownika -> Preferencje użytkownika -> Nazwa sprężarki.

Następnie wprowadzić nazwę przy pomocy klawiatury ekranowej.

Ρ

8. Parametry użytkownika

Domyślne hasło użytkownika: 0000

Parametry użytkownika dostępne są w zakładce "Menu parametrów". Dostęp wymaga wprowadzenia hasła użytkownika, domyślne hasło to **"0000"**

Parametry pogrupowane są w różne podmenu. Część parametrów dostępna jest jedynie w trybie podglądu. Użytkownik może sprawdzić wartość danego parametru, ale nie może go edytować. Podczas próby modyfikacji parametru dostępnego jedynie do podglądu, sterownik wyświetli komunikat ekranowy o treści "Za niski poziom uprawnień do zmiany tego parametru". Widoczność oraz zakresy poszczególnych parametrów mogą być zależne od wartości innych parametrów współzależnych.

Nazwa	Modyfikacja	Zakres	Lokalizacja
Jasność wyświetlacza	Tak	10-100%	Preferencje użytkownika -> Wy- świetlanie
Wygaszacz ekranu	Tak	Wł.; Wył.	Preferencje użytkownika -> Wy- świetlanie
Opóźnienie wygaszacza ekranu	Tak	≥ 0 s	Preferencje użytkownika -> Wy- świetlanie
Jednostka temperatury	Tak	°C; °F	Preferencje użytkownika -> Jed- nostki
Jednostka ciśnienia	Tak	bar; psi	Preferencje użytkownika -> Jed- nostki
Język	U	polski; angiel- ski; niemiecki; rosyjski; francuski; niderlandzki; hiszpański	Preferencje użytkownika -> Ję- zyk
Czas	Tak	hh:mm	Preferencje użytkownika -> Data i godzina
Data	Tak	dd-mm-rrrr	Preferencje użytkownika -> Data i godzina
Format czasu	Tak	24 h; 12 h	Preferencje użytkownika -> Data i godzina
Automatyczna zmiana pomiędzy czasem letnim i zimowym	Tak	Wł.; Wył.	Preferencje użytkownika -> Data i godzina
Nazwa sprężarki	Tak		Preferencje użytkownika -> Na- zwa sprężarki
Tryb pracy	Tak	AUTO; CONST	Parametry pracy -> Tryby pracy
Tryb zdalny	Tak	LOCAL; NET; REM; RVM	Parametry pracy -> Tryby pracy
Ostrzeżenie o wysokim ciśnieniu w sieci	Tak		Parametry pracy -> Ciśnienie w sieci
Ciśnienie odciążenia	Tak		Parametry pracy -> Ciśnienie w sieci
Ciśnienie zadane ^F	Tak		Parametry pracy -> Ciśnienie w sieci
PL

Nazwa	Modyfikacja	Zakres	Lokalizacja
Ciśnienie dociążenia	Tak		Parametry pracy -> Ciśnienie w
			sieci
Ostrzeżenie o niskim ciśnieniu w sieci	Tak		Parametry pracy -> Ciśnienie w
			sieci
Opóźnienie ponownego rozruchu	Nie		Parametry pracy -> Parametry
			czasowe
Opóźnienie stycznika głównego	Nie		Parametry pracy -> Parametry
			czasowe
Czas rozpędzania silnika	Nie		Parametry pracy -> Parametry
			czasowe
Opoznienie włączenia zaworu y	Nie		Parametry pracy -> Parametry
Cree biegu ielewege	Tak	10.00767.0	
Czas biegu jatowego	Tak	10-32707 \$	ezacowo
Adaptacyiny bieg iałowy (AutoTlse)	Tak	W/łacz:	Barametry pracy -> Parametry
Adaptacyjny bieg jałowy (Adtornse)	Idk	Wyłacz	
Czas zatrzymywania silnika	Nie	>0.5	Parametry pracy -> Parametry
		_ 0 0	czasowe
Czas przełaczania gwiazda-tróikat	Nie		Parametry pracy -> Parametry
p g j			czasowe
Funkcja spustu kondensatu	Tak	Włącz;	Parametry pracy -> Spust kon-
		Wyłącz	densatu
Okres otwierania spustu	Tak	0-720 min	Parametry pracy -> Spust kon-
			densatu
Czas otwarcia spustu	Tak	0-600 s	Parametry pracy -> Spust kon-
			densatu
Funkcja wentylatora	Nie		Parametry pracy -> Wentylator
Włączenie wentylatora	Nie		Parametry pracy -> Wentylator
Wyłączenie wentylatora	Nie		Parametry pracy -> Wentylator
Funkcja osuszacza	Nie		Parametry pracy -> Osuszacz
Czas osuszania przed startem sprężarki	Nie		Parametry pracy -> Osuszacz
Czas osuszania po zatrzymaniu sprężarki	Nie		Parametry pracy -> Osuszacz
Czas trwania trybu pulsacyjnego po zatrzy-	Nie		Parametry pracy -> Osuszacz
maniu sprężarki			
Czas okresu pulsacji	Nie		Parametry pracy -> Osuszacz
Czas włączenia w trybie pulsacji	Nie		Parametry pracy -> Osuszacz
Czas oczekiwania w trybie pulsacji	Nie		Parametry pracy -> Osuszacz
Osuszanie w stanie gotowości	Nie	Włącz;	Parametry pracy -> Osuszacz
		Wyłącz	
Podgrzewacz 1	Nie	Włącz;	Parametry pracy -> Podgrze-
		Wyłącz	Wacz
Histereza podgrzewacza 1	Nie		Parametry pracy -> Podgrze- wacz
Podgrzewacz 2	Nie	Włącz;	Parametry pracy -> Podgrze-
		Wyłącz	wacz
Przesunięcie temperatury podgrzewacza 2	Nie		Parametry pracy -> Podgrze-
			wacz

Tabela 18: Lista parametrów użytkownika

PL

Nazwa	Modyfikacja	Zakres	Lokalizacja
Histereza podgrzewacza 2	Nie		Parametry pracy -> Podgrze-
			wacz
Dogrzewanie biegiem jałowym	Nie	Włącz;	Parametry pracy -> Podgrze-
		Wyłącz	wacz
Temperatura włączenia dogrzewania bie-	Nie		Parametry pracy -> Podgrze-
giem jałowym			wacz
Temperatura wyłączenia dogrzewania bie-	Nie		Parametry pracy -> Podgrze-
giem jałowym			wacz
Restart po zaniku zasilania	Tak	Włącz;	Parametry pracy -> Auto restart
		Wyłącz	
Restart po błędzie	Tak	Włącz;	Parametry pracy -> Auto restart
		Wyłącz	
Opóźnienie restartu	Tak	≥ 0 s	Parametry pracy -> Auto restart
Maksymalna ilość prób restartu	Tak	≥1	Parametry pracy -> Auto restart
Przywróć ustawienia użytkownika z kopii lo-	Tak		Diagnostyka i serwis -> Przywra-
kalnej			canie i zapis ustawień
Przywróć ustawienia użytkownika z nośni-	Tak		Diagnostyka i serwis -> Przywra-
ka zewnętrznego			canie i zapis ustawień
Hasło użytkownika	Tak	1-10 cyfr	Ustawienia fabryczne -> Hasła
Funkcja i logika każdego wejścia cyfrowego	Nie		Konfiguracja wejść/wyjść -> Wejścia cyfrowe
Funkcja i logika każdego wyjścia cyfrowego	Nie		Konfiguracja wejść/wyjść -> Wyj-
			ścia cyfrowe
Funkcja i zakres każdego wejścia analogo-	Nie		Konfiguracja wejść/wyjść ->
wego			Wejścia analogowe
Szybkość transmisji	Tak	2400; 4800;	Konfiguracja wejść/wyjść -> RS-
		9600; 19200;	485/RS-485 ISO
		38400; 57600;	
		115200;	
		230400	
Parzystość	Tak	Brak; Parzy-	Konfiguracja wejść/wyjść -> RS-
		sty; Nieparzy-	485/RS-485 ISO
		sty;	
Bity stopu	Tak	1; 1.5; 2	Konfiguracja wejść/wyjść -> RS-
			485/RS-485 ISO
Funkcja RS-485/RS-485 ISO	Tak	Brak; Nad-	Konfiguracja wejść/wyjść -> RS-
		rzędna; Pod-	485/RS-485 ISO
		rzędna	
Adres modbus	lak	1-255	Konfiguracja wejsc/wyjsc -> RS-
Demonia e de cu ID	T-1-		485/RS-485 ISO
Przypisywanie adresu IP	так	Auto(DHCP);	Konfiguracja Wejsc/Wyjsc ->
Adres ID	Tak		Konfiguracia waićć/waićć
Aures IF	IdK		Konnguracja wejsc/wyjsc ->
Maska podsjeci	Tak		
			Ustawienia IP
		1	

Tabela 18: Lista parametrów użytkownika

compressoren 39

Nazwa	Modyfikacja	Zakres	Lokalizacja
Brama	Tak		Konfiguracja wejść/wyjść -> Ustawienia IP
Tryb zdalny	Tak	LOCAL; NET; REM; RVM;	Praca sieciowa -> Konfiguracja
Limit czasu komunikacji ze sprężarką nad- rzędną	Tak	≥ 0 s	Praca sieciowa -> Konfiguracja
Praca jako sprężarka nadrzędna	Tak	Włącz; Wyłącz	Praca sieciowa -> Konfiguracja
Algorytm pracy sieciowej	Tak	SEQ; CAS	Praca sieciowa -> Konfiguracja
Liczba sprężarek podrzędnych	Tak	0-3	Praca sieciowa -> Konfiguracja
Opóźnienie załączania pomiędzy sprężar- kami podrzędnymi	Tak	0-60 s	Praca sieciowa -> Konfiguracja
Czas rotacji	Tak	≥ 1 min	Praca sieciowa -> Konfiguracja
Ciśnienie odciążenia dla sprężarki nadrzęd- nej	Tak		Praca sieciowa -> Konfiguracja
Ciśnienie dociążenia dla sprężarki nadrzęd- nej	Tak		Praca sieciowa -> Konfiguracja
Automatyczna rekonfiguracja limitów ci- śnienia	Tak	Włącz; Wyłącz	Praca sieciowa -> Konfiguracja
Punkt pracy sieci	Tak		Praca sieciowa -> Konfiguracja
Ciśnienie odciążenia (sprężarka podrzęd- na)	Tak		Praca sieciowa -> Sprężarka 1/2/3
Ciśnienie dociążenia (sprężarka podrzęd- na)	Tak		Praca sieciowa -> Sprężarka 1/2/3
Interfejs (sprężarka podrzędna)	Tak	RS-485; RS- 485 ISO	Praca sieciowa -> Sprężarka 1/2/3
Adres modbus (sprężarka podrzędna)	Tak	1-255	Praca sieciowa -> Sprężarka 1/2/3
Praca planowa	Tak	Aktywuj; Dezaktywuj	Planowanie pracy
Dodaj zdarzenie	Tak		Planowanie pracy -> Zdarzenia jednorazowe/Zdarzenia cyklicz- ne

Tabela 18: Lista parametrów użytkownika

^F-Parametr dostępny tylko dla sprężarek wyposażonych w falownik ^O-Parametr opcjonalny

8.1. Zmiana hasła użytkownika

W celu zmiany domyślnego hasła użytkownika należy przejść do zakładki **Parametry użytkownika-**>**Ustawienia fabryczne->Hasła**, a następnie wprowadzić wartość w parametrze "Hasło użytkownika". Hasło może mieć długość od 1 do 10 cyfr.

W przypadku zapomnienia hasła użytkownika należy skontaktować się z serwisem.

Ρ

8.2. Wyszukiwanie parametrów użytkownika

Zakładka "Wyszukaj parametr" pozwala na przejście do konkretnego parametru lub grupy parametrów poprzez podanie jego numeru w wyszukiwarce.

Numer parametru	Opis parametru
1	Planowanie pracy
2	Liczniki serwisowe
3	Zmiana języka
4 5 26	Konfiguracja pracy sieciowej
б	Ekran informacji
7 18	Historia zdarzeń
8 25	Konfiguracja wejść/wyjść
11 12	Ustawienia daty i godziny
15 61	Parametry czasowe
27 28	Ustawienia pracy sieciowej
30	Parametry osuszacza
40	Parametry spustu kondensatu
51 52	Ustawienia wyświetlania
90	Ustawienia funkcji auto-restartu
111	Menu przywracania ustawień
423	Zmiana hasła użytkownika

Tabela 19: Lista parametrów użytkownika

Ρ

9. Algorytm pracy

Sterownik AirVision One został wyposażony w kilka algorytmów sterowania silnikiem elektrycznym w zależności od typu kompresora. Algorytm sterowania jest konfigurowany zgodnie ze specyfikacją sprężarki na etapie produkcyjnym. Sterownik pozwala na określenie następujących sposobów rozruchu:

- Gwiazda-trójkąt
- Falownik Modbus
- Bezpośredni

Powyższe metody sterowania silnikiem elektrycznym oraz ich zasadę działania opisano w podrozdziałach poniżej.

9.1. Schemat algorytmu pracy w konfiguracji Gwiazda-Trójkąt

Rysunek 24: Algorytm sterowania silnikiem

Podstawowy algorytm pracy sprężarki w konfiguracji gwiazda-trójkąt:

- 1. Rozpoczęcie pracy (np. naciśnięcie przycisku START)
- 2. Włączenie stycznika gwiazdy (uruchomienie silnika w konfiguracji gwiazdy)
- 3. Opóźnienie stycznika głównego

- 4. Włączenie stycznika głównego
- 5. Rozruch czas rozpędzania silnika
- 6. Wyłączenie stycznika gwiazdy
- 7. Czas przełączania gwiazda-trójkąt
- 8. Włączenie stycznika trójkąta (uruchomienie silnika w konfiguracji trójkąta), rozpoczęcie pracy właściwej
- 9. Opóźnienie sprężania opóźnienie włączenia zaworu Y
- 10. Włączenie zaworu Y rozpoczęcie sprężania
- 11. Sprężanie. Zawór Y jest włączany/wyłączany przez algorytm pracy zgodnie z wymaganymi nastawami górnej oraz dolnej granicy ciśnienia. Wyłączenie elektrozaworu Y powoduje odciążenie sprężarki i przejście silnika w stan biegu jałowego
- 12. Zatrzymanie pracy (np. naciśnięcie przycisku STOP)
- 13. Wyłączenie zaworu Y, przejście w stan biegu luzem
- 14. Zatrzymywanie czas zatrzymywania silnika
- 15. Wyłączenie styczników trójkąta oraz głównego
- 16. Opóźnienie ponownego rozruchu

9.1.1. Parametry czasowe pracy sprężarki

Ustawienia wszystkich czasów i opóźnień wykorzystywanych w algorytmie sterowania można znaleźć w:

Parametry użytkownika -> Parametry pracy -> Parametry czasowe.

Rysunek 25: Widok menu z ustawieniami parametrów czasowych dla konfiguracji Gwiazda-trójkąt

PL

Nazwa	Jedn.	Opis
Opóźnienie ponownego rozruchu	s	Minimalny czas pomiędzy zatrzymaniem sprężarki
		a kolejnym startem. Jeśli praca sprężarki zostanie
		wznowiona przed jego upływem, to silnik zostanie
		uruchomiony z odpowiednim opóźnieniem
Opóźnienie stycznika głównego	ms	Czas pomiędzy załączeniem stycznika głównego a
		załączeniem stycznika konfiguracji gwiazdy
Czas rozpędzania silnika	S	Czas rozpędzania się silnika elektrycznego. Czas
		przełączania z konfiguracji gwiazdy na konfigura-
		cję trójkąta
Opóźnienie włączania zaworu Y	s	Czas oczekiwania na sprężanie, w trakcie którego
		silnik pracuje luzem
Czas biegu jałowego	s	Czas pracy luzem po przekroczeniu górnej granicy
		ciśnienia
Czas zatrzymywania silnika	S	Czas pracy silnika luzem po naciśnięciu przycisku
		STOP
Czas przełączania gwiazda-trójkąt	ms	Czas między wyłączeniem stycznika konfiguracji
		gwiazda a włączeniem stycznika od konfiguracji
		trójkąta
Adaptacyjny bieg jałowy		Opisany w rozdziale 9.4.1. Adaptacyjny bieg jało-
(AutoTlse)		wy (AutoTlse)

Tabela 20: Lista parametrów czasowych pracy sprężarki

9.2. Schemat algorytmu pracy w konfiguracji Falownik

Rysunek 26: Algorytm sterowania silnikiem

Podstawowy algorytm pracy sprężarki w konfiguracji Falownik:

- 1. Rozpoczęcie pracy (np. naciśnięcie przycisku START)
- 2. Rozruch czas rozpędzania silnika
- 3. Opóźnienie sprężania opóźnienie włączania zaworu Y
- 4. Włączenie zaworu Y rozpoczęcie sprężania
- 5. Sprężanie. W trakcie sprężania następuje sterowanie ciśnieniem poprzez włączanie i wyłączanie zaworu Y oraz sterowanie obrotami silnika przez algorytm PID. Wyłączenie elektrozaworu Y powoduje odciążenie sprężarki i przejście silnika w stan biegu jałowego
- 6. Zatrzymanie pracy (np. naciśnięcie przycisku STOP)
- 7. Opóźnienie wyłączenia zaworu Y
- 8. Wyłączenie zaworu Y, przejście w stan biegu luzem
- 9. Zatrzymywanie czas zatrzymywania silnika
- 10. Opóźnienie ponownego rozruchu

Ρ

9.2.1. Parametry czasowe pracy sprężarki

Ustawienia wszystkich czasów i opóźnień wykorzystywanych w algorytmie sterowania można znaleźć w:

Parametry użytkownika -> Parametry pracy -> Parametry czasowe.

Rysunek 27: Widok menu z ustawieniami parametrów czasowych dla konfiguracji Falownik

Nazwa	Jedn.	Opis
Opóźnienie ponownego rozruchu	S	Minimalny czas pomiędzy zatrzymaniem sprężarki a kolejnym startem. Jeśli praca sprężarki zostanie wznowiona przed jego upływem, to silnik zostanie
		uruchomiony z odpowiednim opóźnieniem
Czas rozpędzania silnika	S	Czas rozpędzania się silnika elektrycznego. Proce- dura stopniowego rozruchu silnika (SOFT-START) do prędkości minimalnej
Opóźnienie włączania zaworu Y	S	Czas oczekiwania na sprężanie, w trakcie którego silnik pracuje luzem
Opóźnienie wyłączania zaworu Y	S	Opóźnienie wyłączenia zaworu Y po naciśnięciu przycisku STOP
Czas biegu jałowego	S	Czas pracy luzem na minimalnych obrotach silni- ka elektrycznego po przekroczeniu górnej granicy ciśnienia
Czas zatrzymywania silnika	S	Czas zatrzymywania się silnika elektrycznego. Pro- cedura stopniowego zatrzymania silnika (SOFT- STOP)
Adaptacyjny bieg jałowy (AutoTlse)		Opisany w rozdziale 9.4.1. Adaptacyjny bieg jało- wy (AutoTlse)

Tabela 21: Lista parametrów czasowych pracy sprężarki

9.2.2. Regulator PID

Częstotliwość wyjściowa silnika napędowego jest sterowana przez algorytm PID, w oparciu o aktualną oraz zadaną wartość ciśnienia. Regulator będzie dążył do zapewnienia odpowiedniej prędkości obrotowej wału sprężarki, aby zoptymalizować proces sprężania i zredukować zużycie energii elektrycznej.

9.2.3. Ciśnienie zadane

Dla konfiguracji z falownikiem w algorytmie sterowania, oprócz dolnej i górnej granicy ciśnienia, brana jest również pod uwagę wartość ciśnienia zadanego. Jest to tzw. punkt regulacji algorytmu PID, czyli pożądana wartość ciśnienia w sieci i algorytm poprzez płynną regulację wydajności kompresora dąży do ciągłego utrzymania tej wartości ciśnienia.

Jego wartość można ustawić, razem z pozostałymi nastawami ciśnienia, w zakładce:

Parametry użytkownika -> Parametry pracy -> Ciśnienie w sieci.

Wartość tego parametru jest również wyświetlana na ekranie głównym sterownika. Dla innych algorytmów sterownia, np. Gwiazda-Trójkąt, parametr ten jest niewidoczny.

	Ciśnienie	
	Ostrzeżenie o wysokim ciśnieniu w sieci	10.3 bar 🥖
	Ciśnienie odciążenia	10.0 bar 🖉
	Ciśnienie zadane	9.1 bar 🖉
•	Ciśnienie dociążenia	8.5 bar 🖉
6.1 bar	Ostrzeżenie o niskim ciśnieniu w sieci	0.0 bar 🖉

Rysunek 28: Nastawy ciśnienia w sieci

9.3. Schemat algorytmu pracy w konfiguracji Rozruch Bezpośredni

Rysunek 29: Algorytm sterowania silnikiem

Podstawowy algorytm pracy sprężarki w konfiguracji Rozruch Bezpośredni:

- 1. Rozpoczęcie pracy (np. naciśnięcie przycisku START)
- 2. Włączenie stycznika głównego
- 3. Rozruch silnika czas rozpędzania silnika
- 4. Opóźnienie sprężania opóźnienie włączania zaworu Y
- 5. Włączenie zaworu Y rozpoczęcie sprężania
- 6. Sprężanie. Zawór Y jest włączany/wyłączany przez algorytm pracy zgodnie z wymaganymi nastawami górnej oraz dolnej granicy ciśnienia
- 7. Zatrzymanie pracy (np. naciśnięcie przycisku STOP)
- 8. Wyłączenie zaworu Y, przejście w stan biegu luzem
- 9. Zatrzymywanie czas zatrzymywania silnika
- 10. Wyłączenie stycznika głównego

9.3.1. Parametry czasowe pracy sprężarki

Ustawienia wszystkich czasów i opóźnień wykorzystywanych w algorytmie sterowania można znaleźć w :

Parametry użytkownika -> Parametry pracy -> Parametry czasowe.

Rysunek 30: Widok menu z ustawieniami parametrów czasowych dla konfiguracji Rozruch Bezpośredni

Nazwa	Jedn.	Opis
Opóźnienie ponownego rozruchu	S	Minimalny czas pomiędzy zatrzymaniem sprężarki
		a kolejnym startem. Jeśli praca sprężarki zostanie
		wznowiona przed jego upływem, to silnik zostanie
		uruchomiony z odpowiednim opóźnieniem
Czas rozpędzania silnika	s	Czas rozpędzania się silnika elektrycznego
Opóźnienie włączania zaworu Y	s	Czas oczekiwania na sprężanie, w trakcie którego
		silnik pracuje luzem
Czas biegu jałowego	s	Czas pracy luzem po przekroczeniu górnej granicy
		ciśnienia
Czas zatrzymywania silnika	s	Czas pracy silnika luzem po naciśnięciu przycisku
		STOP
Adaptacyjny bieg jałowy		Opisany w rozdziale 9.4.1. Adaptacyjny bieg jało-
(AutoTlse)		wy (AutoTlse)

Tabela 22: Lista parametrów czasowych pracy sprężarki

9.4. **Bieg jałowy**

Bieg jałowy sprężarki jest częścią każdego z trybów pracy, które przewidziane zostały w sterowniku, jest on realizowany poprzez zamknięcie zaworu Y i pozostawienie włączonego silnika. Umożliwia to szybki powrót maszyny do stanu sprężania powietrza w przypadku spadku ciśnienia, bez konieczności oczekiwania na ponowny rozruch silnika.

Czas biegu jałowego można zdefiniować przechodząc do zakładki:

Parametry użytkownika -> Parametry pracy -> Parametry czasowe -> Czas biegu jałowego. Możliwy do ustawienia zakres czasu biegu jałowego jest zależny od konkretnego modelu sprężarki. Po upłynięciu czasu biegu jałowego silnik zostaje zatrzymany.

9.4.1. Adaptacyjny bieg jałowy (AutoTlse)

Optymalne ustawienie czasu biegu jałowego jest istotne ze względów ekonomicznych. Zbyt długi czas powoduje zbędną pracę silnika na biegu luzem, co wiąże się z większym zużyciem energii elektrycznej. Z kolei ustawienie krótkiego czasu biegu jałowego może być przyczyną częstego włączania oraz wyłączania sprężarki, co również powoduje wzrost zużycia energii elektrycznej, a dodatkowo skraca żywotność elementów mechanicznych maszyny.

Wykorzystanie algorytmu pozwala na automatyczne sterowanie czasem biegu luzem silnika w automatycznym trybie pracy sprężarki. Na bieżąco analizowana jest historia oraz aktualna wartość ciśnienia w zbiorniku z uwzględnieniem następujących parametrów:

- monotoniczność ciśnienia,
- szybkość opadania/narostu ciśnienia,
- · odniesienie wartości ciśnienia do górnej i dolnej granicy,
- · czasy narostu/opadania ciśnienia w poprzednich cyklach włączania/wyłączania sprężarki,
- ustawiony czas biegu jałowego,
- szacowana liczba włączeń sprężarki na godzinę.

Na podstawie zebranych informacji funkcja **AutoTise** steruje czasem biegu jałowego głównie poprzez jego skracanie, przy czym nigdy nie jest on krótszy niż minimalny czas biegu jałowego nastawiony w parametrach czasowych w ustawieniach fabrycznych sterownika. Jeżeli przy pracy luzem nie ma dużego zapotrzebowania na ciśnienie w sieci i spada ono powoli lub w ogóle nie spada, to algorytm przyśpiesza moment wyłączenia sprężarki. Jeśli przewidywana jest konieczność włączenia sprężarki w krótkim czasie po wyłączeniu silnika, to sprężarka pozostaje w trybie biegu luzem.

Funkcja Adaptacyjnego biegu jałowego może być wykorzystywana zarówno na sprężarkach pracujących osobno, jak i na sprężarkach w sieci.

W celu włączenia funkcji **AutoTlse** należy przejść do ekranu **Parametry użytkownika->Parametry pracy->Parametry czasowe** i parametr "Adaptacyjny bieg jałowy (AutoTlse)" ustawić na "Włącz".

9.5. Metoda kontroli dekompresji

Sterownik AirVision One może kontrolować rozprężenie przy pomocy kilku metod: z wykorzystaniem czujnika ssania, opóźnienia czasowego lub czujnika ciśnienia oleju.

10. Ustawienia pracy sprężarki i sterownika

Ustawienia trybów pracy sprężarki można znaleźć w zakładce:

Parametry użytkownika->Parametry pracy->Tryby pracy.

Ustawienia trybów pracy podzielone są na 2 niezależne grupy: Tryb pracy oraz Tryb zdalny. Pierwszy z nich definiuje algorytm pracy sprężarki, drugi określa sposób w jaki sterowana jest sprężarka.

10.1. Tryby pracy

Dostępne tryby pracy:

- AUTO
- CONST

10.1.1. Tryb automatyczny (AUTO)

Tryb pracy automatycznej polega na samoczynnym włączaniu i wyłączaniu sprężarki w momencie osiągnięcia zadanych wartości ciśnienia dociążenia i odciążenia. Aby uruchomić pracę automatyczną należy nacisnąć zielony przycisk START.

Kiedy ciśnienie w sieci osiągnie wartość zadaną (max.), sprężarka przejdzie do biegu jałowego. Jeśli ciśnienie w sieci spadnie poniżej wartości zadanej (min.), przed upływem czasu biegu jałowego, sprężarka powróci do sprężania. Jeśli czas biegu jałowego dobiegnie końca, a wartość ciśnienia w sieci będzie mieścić się w granicach ciśnienia zadanego, silnik zostanie zatrzymany. Sprężarka automatycznie uruchomi się ponownie w momencie kiedy ciśnienie spadnie poniżej wartości ciśnienia minimalnego. W celu wyłączenia cyklu pracy automatycznej należy nacisnąć czerwony przycisk STOP. Podczas włączonej pracy automatycznej możliwe jest wymuszenie przejścia z biegu jałowego do stanu sprężania, zanim osiągnięte zostanie ciśnienie dociążenia poprzez wciśnięcie przycisku START, o ile wartość aktualnego ciśnienia w sieci jest mniejsza niż ciśnienie odciążenia.

10.1.2. Tryb ciągły (CONST)

Tryb pracy ciągłej polega na utrzymywaniu silnika sprężarki w stanie ciągłej pracy. Odbywa się to poprzez nieskończony czas biegu jałowego. Aby uruchomić tryb ciągły należy nacisnąć zielony przycisk START.

Kiedy ciśnienie w sieci osiągnie wartość zadaną (max.), sprężarka przejdzie do stanu biegu jałowego i pozostanie w nim do momentu, aż wartość ciśnienia w sieci spadnie poniżej wartości zadanej (min.), po czym ponownie zacznie sprężać. W przypadku kiedy sprężarka uruchamiana jest przyciskiem START, a wartość ciśnienia w sieci mieści się w granicach ciśnienia zadanego, silnik nie włączy się. Włączenie silnika po raz pierwszy nastąpi w momencie kiedy ciśnienie spadnie poniżej wartości minimalnej. W celu wyłączenia cyklu pracy ciągłej należy nacisnąć czerwony przycisk STOP.

Podczas włączonej pracy ciągłej możliwe jest wymuszenie przejścia z biegu jałowego do stanu sprężania, zanim osiągnięte zostanie ciśnienie dociążenia poprzez wciśnięcie przycisku START, o ile wartość aktualnego ciśnienia w sieci jest mniejsza niż ciśnienie odciążenia.

AIRPRESS

10.2. Tryby zdalne

Dostępne tryby zdalne:

- LOCAL
- NET
- REM
- RVM

10.2.1. Tryb sterowania lokalnego (LOCAL)

W trybie sterowania lokalnego sprężarka pracuje zgodnie z nastawionymi ciśnieniami na sterowniku (minimalnym i maksymalnym). Sterowanie sprężarką odbywa się poprzez przyciski START i STOP, a sposób w jaki pracuje podyktowany jest przez wewnętrzne algorytmy sterownika, zależne od wybranego trybu pracy.

10.2.2. Tryb sieciowy NET

W trybie pracy sieciowej sprężarka pracuje zgodnie z nastawami ciśnienia przesłanymi przez sterownik nadrzędny poprzez Modbus RTU. Za rozpoczęcie pracy sprężarki odpowiedzialny jest sterownik nadrzędny, nie jest wymagane naciśnięcie przycisku START.

10.2.3. Tryb sterowania zdalnego REM

W trybie sterowania zdalnego REM, sprężarka nie kontroluje nastaw ciśnienia w sieci, sterowanie odbywa się poprzez wejście cyfrowe skonfigurowane jako "Zdalny sygnał dociążenia - odciążenia". Kontrola ciśnienia odbywa się zewnętrznie np. poprzez sterownik nadrzędny.

W momencie, w którym na wejściu cyfrowym sterownika pojawi się sygnał dociążenia, sprężarka zachowa się w taki sam sposób, jak w przypadku spadku ciśnienia poniżej wartości zadanej (min.). Zmiana sygnału na wejściu cyfrowym na odciążenie, zaskutkuje zachowaniem tożsamym z przekroczeniem górnej granicy zadanego ciśnienia (max.).

Oprócz powyższych różnic, działanie algorytmu sterowania sprężarką odbywa się zgodnie z wybranym trybem pracy. Po wybraniu trybu zdalnego REM, na głównym widoku interfejsu, zakresy ciśnienia zostaną zastąpione informacją "Zew. kontrola ciśnienia". Pomimo braku nadzoru nad zadanym ciśnieniem w sieci, sterownik nieprzerwanie kontroluje wartości graniczne ciśnienia przewidziane przez producenta sprężarki. Jeżeli zmierzone ciśnienie w sieci przekroczy wartość ciśnienia maksymalnego, wówczas praca sprężarki zostanie przerwana.

Uwaga!

Aby możliwe było rozpoczęcie pracy sprężarki w trybie zdalnym REM, należy nacisnąć przycisk START na sterowniku.

AIRPRESS | compressoren 52

10.2.4. Konfiguracja trybu zdalnego REM

Aby skonfigurować pracę zdalną w trybie REM należy ustawić parametr "Tryb zdalny" na "REM" (**Parametry użytkownika->Parametry pracy->Tryby pracy->Tryb zdalny**). Żeby możliwe było sterowanie zdalne w trybie REM, jedno z wejść cyfrowych sterownika powinno mieć przypisaną funkcję "Zdalny sygnał dociążenia - odciążenia". Aby to zweryfikować należy przejść do parametrów konfiguracji wejść cyfrowych (**Parametry użytkownika->Konfiguracja wejść/wyjść->Wejścia cyfrowe**). Jeżeli żadne z wejść cyfrowych nie jest skonfigurowane jako "Zdalny sygnał dociążenia - odciążenia", należy skontaktować się z producentem

10.2.5. Tryb sterowania zdalnego RVM

W trybie sterowania zdalnego RVM, sprężarka nie kontroluje nastaw ciśnienia w sieci, sterowanie odbywa się poprzez komendy Modbus RTU (dociąż lub odciąż) przesyłane poprzez jeden z portów RS-485. Kontrola ciśnienia odbywa się zewnętrznie np. poprzez sterownik nadrzędny.

W momencie, w którym sterownik otrzyma komendę dociążenia, sprężarka zachowa się w taki sam sposób, jak w przypadku spadku ciśnienia poniżej wartości zadanej (min.). Zmiana komendy na odciążenie zaskutkuje zachowaniem tożsamym z przekroczeniem górnej granicy zadanego ciśnienia (max.).

Oprócz powyższych różnic, działanie algorytmu sterowania sprężarką odbywa się zgodnie z wybranym trybem pracy. Po wybraniu trybu zdalnego RVM, na głównym widoku interfejsu, zakresy ciśnienia zostaną zastąpione informacją "Zew. kontrola ciśnienia". Pomimo braku nadzoru nad zadanym ciśnieniem w sieci, sterownik nieprzerwanie kontroluje wartości graniczne ciśnienia przewidziane przez producenta sprężarki. Jeżeli zmierzone ciśnienie w sieci przekroczy wartość ciśnienia maksymalnego, wówczas praca sprężarki zostanie przerwana.

Uwaga!

Aby możliwe było rozpoczęcie pracy sprężarki w trybie zdalnym RVM, należy nacisnąć przycisk START na sterowniku.

10.2.6. Konfiguracja trybu zdalnego RVM

Aby skonfigurować pracę zdalną w trybie RVM należy ustawić parametr "Tryb zdalny" na "RVM" (**Parametry** użytkownika->Parametry pracy->Tryby pracy->Tryb zdalny).

10.2.7. Funkcja zdalnego startu

Funkcja zdalnego startu sprężarki pozwala kontrolować sprężarkę przy pomocy wejścia cyfrowego, sterowanie odbywa się w taki sam sposób jak w przypadku naciśnięcia przycisku START lub STOP na sterowniku.

Uwaga!

Przyciski START oraz STOP pozostają nadrzędne dla funkcji zdalnego startu, oznacza to iż zezwolenie na start odbywa się poprzez naciśnięcie przycisku START. Jeżeli funkcja zdalnego startu jest skonfigurowana na jednym z wejść, to po zezwoleniu na start, zależnie od sygnału na wejściu, na polu komunikatów tekstowych wyświetli się komunikat "Oczekiwanie na sygnał startu zdalnego" lub rozpocznie się procedura startu sprężarki. Naciśnięcie przycisku STOP anuluje zezwolenie na start, do momentu ponownego naciśnięcia przycisku START.

10.2.8. Konfiguracja funkcji zdalnego startu

Konfiguracja funkcji zdalnego startu odbywa się poprzez przypisanie funkcji "Zdalny start-stop" jednemu z wejść cyfrowych sterownika. W celu weryfikacji, które wejście ma przypisaną powyższą funkcję, należy przejść do parametrów konfiguracji wejść cyfrowych (**Parametry użytkownika->Konfiguracja wejść/wyjść->Wejścia cyfrowe**). Jeżeli żadne z wejść cyfrowych nie jest skonfigurowane jako "Zdalny start-stop", należy skontaktować się z producentem

10.2.9. Różnice pomiędzy trybem zdalnym REM i RVM, a funkcją zdalnego startu

Tryb zdalny REM/RVM to specjalny tryb sterownika, w którym kontrola ciśnienia w sieci odbywa się zewnętrznie. Sam sterownik w trybie REM/RVM działa w oparciu o zewnętrzny sygnał dociążenia i odciążenia, który zastępuje nastawy ciśnienia. Tryb ten przeznaczony jest do sterowania nadrzędnego, w którym za kontrolę ciśnienia w sieci odpowiedzialny jest sterownik nadrzędny.

Funkcja zdalnego startu, w przeciwieństwie do trybu zdalnego REM/RVM, jest jedynie sygnałem, który można przypisać do wejścia cyfrowego sterownika. Nie wpływa na algorytm sterowania, sprężarka działa zgodnie z wybranymi trybami pracy. Funkcja zdalnego startu jest dodatkowym warunkiem jaki musi być spełniony, aby maszyna wystartowała. Funkcja ta pozwala np. na wyprowadzenie przełącznika do włączania sprężarki na zewnętrzny pulpit operatorski, może być tez wykorzystana do prostych algorytmów pracy nadrzędnej.

11. Inne funkcje

11.1. Funkcja wentylatora (chłodzenie sprężarki)

Funkcja wentylatora działa w oparciu o pomiar temperatury oleju i pozwala na utrzymywanie temperatury oleju w optymalnym dla maszyny zakresie. Wentylator włącza się i wyłącza przy określonych poziomach temperatury oleju. Funkcja jest aktywna tylko po wciśnięciu przycisku START. Parametry funkcji wentylatora znajdują się w zakładce:

Parametry użytkownika -> Parametry pracy -> Wentylator. Ich modyfikacja wymaga serwisowego poziomu uprawnień.

Zatrzymanie maszyny poprzez naciśnięcie przycisku STOP lub wystąpienie błędu w momencie, kiedy wentylator jest włączony, spowoduje jego zatrzymanie. Natomiast w przypadku zatrzymania silnika podczas standardowego cyklu pracy, wentylator nie zostanie wyłączony do momentu, aż temperatura oleju nie spadnie poniżej temperatury wyłączenia wentylatora.

Uwaga! Aby funkcja wentylatora działała poprawnie, do jednego z wyjść cyfrowych musi być przypisana funkcja "Wentylator"

11.2. Funkcja osuszacza

Funkcja osuszacza pozwala na sterowanie osuszaczem przy użyciu jednego z wyjść cyfrowych (przekaźnikowych) sterownika. Dostępne są 2 niezależne tryby pracy osuszacza: Standardowy oraz pulsacyjny.

W trybie standardowym osuszacz jest włączony w trakcie pracy silnika, możliwe jest też skonfigurowanie czasu osuszania przed rozpoczęciem pracy i po zakończeniu.

Istnieje także możliwość skonfigurowania pracy osuszacza w taki sposób, aby osuszacz pracował cały czas, gdy sprężarka jest w stanie gotowości do pracy lub w stanie pracy. Taka konfiguracja pozwala na nieprzerwaną pracę osuszacza także w przypadku osiągnięcia zadanego ciśnienia.

Tryb pulsacyjny polega na cyklicznym włączaniu i wyłączaniu osuszacza w celu podtrzymania odpowiednich parametrów. Tryb pulsacyjny uruchamia się tylko w momencie gdy, silnik maszyny jest zatrzymany w wyniku upłynięcia czasu biegu jałowego, po osiągnięciu zadanego ciśnienia. Osuszacz przejdzie do działania w trybie pulsacyjnym (jeżeli ten jest skonfigurowany) po zakończeniu pracy w trybie standardowym.

W momencie, kiedy funkcja osuszacza jest włączona, użytkownik informowany jest o pozostałym czasie pracy osuszacza na widoku głównym sterownika.

Konfiguracja osuszacza wymaga uprawnień serwisowych, aby wyświetlić obecną konfigurację należy przejść do zakładki:

Parametry użytkownika -> Parametry pracy -> Osuszacz.

Uwaga!

Aby funkcja osuszacza działała poprawnie, do jednego z wyjść cyfrowych musi być przypisana funkcja "Osuszacz"

11.3. Funkcja spustu kondensatu

Sterownik posiada wbudowaną funkcję obsługi zaworu spustu kondensatu. Zawór jest otwierany z wykorzystaniem jednego z wyjść cyfrowych (przekaźnikowych) sterownika, interwał czasowy oraz czas zadziałania jest definiowany przez użytkownika.

11.3.1. Konfiguracja funkcji spustu kondensatu

W celu konfiguracji funkcji spustu kondensatu należy przejść do zakładki **Parametry użytkownika -> Parametry pracy -> Spust kondensatu**. Parametr "Funkcja spustu kondensatu" pozwala na włączenie lub wyłączenie działania funkcji.

Parametr "Okres otwierania spustu" określa interwał czasowy w minutach, pomiędzy kolejnymi otwarciami zaworu. Maksymalny możliwy do ustawienia okres to 720 minut.

Parametr "Czas otwarcia spustu" określa czas w sekundach, na jak długo otwarty zostanie zawór spustowy. Maksymalny możliwy do ustawienia czas to 600 sekund.

Uwaga! Aby funkcja spustu kondensatu działała poprawnie, do jednego z wyjść cyfrowych musi być przypisana funkcja "Spust kondensatu"

11.4. Funkcja Auto restartu

Funkcja auto restartu pozwala na automatyczne wznowienie pracy sprężarki po wystąpieniu zaniku zasilania lub błędu. Nie wszystkie błędy pozwalają na auto restart, pełna lista błędów z podziałem na te pozwalające na auto restart lub nie, znajduje się w rozdziale "Ostrzeżenia i błędy".

Procedura automatycznego wznowienia pracy sprężarki w przypadku wystąpienia błędu pozwalającego na auto restart polega na próbie potwierdzenia błędu, a następnie wystartowaniu sprężarki. W przypadku niepowodzenia (brak możliwości potwierdzenia błędu), sterownik podejmie kolejne próby auto restartu (ilość prób oraz interwał czasowy pomiędzy próbami są definiowane przez użytkownika).

Procedura automatycznego wznowienia pracy sprężarki w przypadku zaniku zasilania działa w ten sam sposób, co opisana powyżej, z tą różnicą, że działa jedynie po zaniku zasilania.

Użytkownik jest informowany o trwającej procedurze auto restartu poprzez komunikat na widoku głównym sterownika w polu komunikatów.

W przypadku niepowodzenia auto restartu, funkcja zostanie zresetowana po ręcznym uruchomieniu sprężarki.

11.4.1. Konfiguracja funkcji auto restartu

W celu konfiguracji funkcji auto restartu należy przejść do zakładki:

Parametry użytkownika -> Parametry pracy -> Auto restart.

Parametry "Restart po zaniku zasilania" oraz "Restart po błędzie" pozwalają na wybranie zakresu działania funkcji, może być włączony tylko jeden z nich lub oba jednocześnie.

Parametr "Opóźnienie restartu" pozwala w sekundach zdefiniować czas, jaki odczeka sterownik zanim przystąpi do procedury automatycznego wznowienia pracy. Jednocześnie jest to też interwał

czasu, jaki sterownik odczeka pomiędzy kolejnymi próbami auto restartu. Parametr "Maksymalna ilość prób restartu" określa ilość prób auto restartu, jaką podejmie sterownik.

11.5. Funkcja podgrzewacza

Funkcja podgrzewacza pozwala na uruchomienie grzałki oleju wykorzystując do tego jedno z wyjść cyfrowych (przekaźnikowych) sterownika. Istnieje także możliwość zapobiegania nadmiernemu wystudzeniu oleju poprzez dogrzewanie biegiem jałowym. Sterownik przewiduje możliwość podgrzewania oleju w 3 niezależnych trybach.

Użytkownik ma możliwość podejrzenia nastaw parametrów podgrzewaczy w zakładce:

Parametry użytkownika -> Parametry pracy -> Podgrzewacz.

Ich modyfikacja wymaga uprawnień serwisowych.

11.5.1. Podgrzewacz 1

Funkcja podgrzewacza 1 uruchamia się w momencie, gdy zainicjowany zostanie start silnika, a temperatura oleju będzie niższa niż minimalna temperatura oleju do rozruchu przewidziana przez producenta sprężarki. Na widoku głównym sterownika widoczny będzie komunikat informujący o działaniu podgrzewacza. Rozruch nastąpi w momencie, kiedy temperatura oleju osiągnie wartość minimalną do rozruchu + wartość histerezy podgrzewacza 1.

Uwaga! Aby funkcja podgrzewacza 1 działała poprawnie, do jednego z wyjść cyfrowych musi być przypisana funkcja "Podgrzewacz 1"

11.5.2. Podgrzewacz 2

Funkcja podgrzewacza 2 pozwala na utrzymanie temperatury oleju w zakresie pozwalającym na natychmiastowy rozruch silnika, niezależnie od algorytmu pracy sprężarki. Oznacza to, że podgrzewacz uruchomi się w momencie, kiedy sprężarka jest zatrzymana w celu utrzymania temperatury oleju w określonym przedziale temperatury.

Uwaga! Aby funkcja podgrzewacza 2 działała poprawnie, do jednego z wyjść cyfrowych musi być przypisana funkcja "Podgrzewacz 2"

11.5.3. Dogrzewanie biegiem jałowym

Funkcja dogrzewania biegiem jałowym polega na wykorzystaniu biegu jałowego sprężarki w celu niedopuszczenia spadku temperatury oleju poniżej minimalnej temperatury do rozruchu. Dogrzewanie biegiem jałowym uruchamia się jedynie w momencie, kiedy sprężarka jest w stanie osiągnięcia zadanego ciśnienia. Oznacza to, że funkcja ta nie zadziała, jeżeli sprężarka jest w stanie zatrzymania. Użytkownik jest poinformowany o aktywności funkcji dogrzewania biegiem jałowym poprzez komunikat na widoku głównym sterownika.

11.6. Przywracanie i zapisywanie ustawień

Sterownik AirVision One posiada możliwość zapisywania i przywracania ustawień z kopii lokalnej lub z zewnętrznego nośnika danych. Z poziomu dostępu użytkownika możliwe jest jedynie przywrócenie ustawień użytkownika w sterowniku. Do zapisu lub przywrócenia ustawień parametrów serwisowych wymagane są uprawnienia serwisu.

Opcja przywracania i zapisywania ustawień na zewnętrznych nośnikach danych pozwala na kopiowanie ustawień między sterownikami AirVision One.

W celu przywrócenia lub zapisu ustawień należy przejść do zakładki:

Parametry użytkownika -> Diagnostyka i serwis -> Przywracanie i zapis ustawień.

Użytkownik ma możliwość przywrócenia ustawień z lokalnej kopii zapisanej w pamięci sterownika lub z zewnętrznego nośnika danych podłączonego do jednego ze złącz USB sterownika. Zakres przywróconych ustawień obejmuje jedynie parametry użytkownika. W celu przywrócenia ustawień serwisowych wymagane jest logowanie się z poziomu serwisu. Przywracanie ustawień sprężarki nadpisuje dane i nie będą one mogły zostać przywrócone. Po wybraniu źródła przywracania ustawień należy potwierdzić ostrzeżenie. Ρ

12. Funkcje diagnostyczne

Sterownik AirVision One został wyposażony w dodatkowe narzędzia diagnostyczne, które mogą ułatwić serwisowi obsługę i diagnostykę sprężarki. W celu skorzystania z funkcji diagnostycznych sterownika należy przejść do zakładki **Parametry serwisowe -> Diagnostyka i serwis**.

12.1. Diagnostyka wejść/wyjść

Zakładka "Diagnostyka wejść/wyjść" przedstawia status każdego z wejść oraz wyjść cyfrowych i analogowych oraz kilku dodatkowych parametrów.

Na górze zakładki znajduje się legenda dotycząca wejść oraz wyjść cyfrowych.

Lista parametrów diagnostycznych:

- Stan logiczny wejść cyfrowych (wysoki/niski)
- Stan wyjść cyfrowych (zamknięte/otwarte)
- Wartość zmierzona wejść RTD
- Wartość zmierzona wejść Al
- Wartość zmierzona wejścia MC1 (prąd uzwojenia wtórnego przekładnika)
- Napięcie baterii sterownika
- Napięcie zasilania sterownika
- Napięcie wewnętrzne 24VDC sterownika

13. Liczniki serwisowe

Liczniki serwisowe mają za zadanie przypominać o konieczności wykonania określonych czynności serwisowych. Każdy z liczników ma 2 tryby pracy, odliczanie pozostałych godzin pracy sprężarki lub odliczanie czasu do konkretnej daty. Oba tryby są niezależne, może być aktywny tylko jeden z nich lub dwa równolegle. Pozostałe godziny pracy odliczane są tylko podczas pracy silnika, godziny nie są odliczane, gdy sprężarka jest wyłączona lub ma status oczekiwania. Odliczanie czasu do konkretnej daty odbywa się niezależnie od pracy sprężarki.

Sterownik AirVision One posiada 9 niezależnych liczników serwisowych:

- Licznik przeglądu generalnego
- Licznik wymiany oleju
- Licznik filtra oleju
- Licznik filtra powietrza
- Licznik separatora
- Licznik pasów napędowych
- Licznik smarowania łożysk silnika
- Licznik ogólnego przeznaczenia 1
- Licznik ogólnego przeznaczenia 2

W przypadku sprężarek z napędem bezpośrednim licznik pasów napędowych nie jest dostępny, jego miejsce zajmuje licznik ogólnego przeznaczenia 3.

1/2	Liczniki serwiso	we
	Licznik przeglądu generalnego	WYŁ.
	Licznik wymiany oleju	i 12.01.2025 2000 h
	Licznik filtra oleju	2000 h
•	Licznik filtra powietrza	2000 h
6.1 bar	Licznik separatora	2000 h

Rysunek 31: Zakładka "Liczniki serwisowe"

Każdy licznik przedstawiony jest w postaci kafelka z nazwą licznika. Stan licznika widoczny jest po prawej stronie od nazwy. Jeżeli licznik jest aktywny, zależnie od trybu pracy licznika, wyświetlana jest data następnego przeglądu lub liczba godzin pracy pozostałych do przeglądu lub oba jednocześnie. W przypadku kiedy licznik jest nieaktywny, widnieje przy nim napis "WYŁ.".

RPRESS compressoren 60

Jeżeli którykolwiek z aktywnych liczników odliczy godziny do wartości 0, lub osiągnie datę wykonania serwisu, na sterowniku pojawi się ostrzeżenie o treści nawiązującej do licznika, który został przekroczony, np. "Konieczna wymiana oleju".

13.1. Restartowanie liczników serwisowych

Restartowanie liczników serwisowych odbywa się poprzez wybranie kafelka jednego z liczników, a następnie wybranie "Reset" w parametrze "Zresetuj serwis". Przed nastąpieniem restartu, wyświetlone zostanie potwierdzenie, w treści którego zawarte będą wartości, do jakich licznik zostanie zrestartowany. Interwały serwisowe przypisywane są przez serwis lub producenta sprężarki. Zresetowanie licznika serwisowego wymaga podania hasła użytkownika lub serwisu.

14. Statystyki

Sterownik AirVision One rejestruje pomiary z czujników i informacje na temat pracy sprężarki oraz przedstawia je w postaci statystyk, są informacje na temat czasu oraz cyklów pracy sprężarki. Rodzaje danych dotyczących obciążenia są różne dla sprężarek z rozruchem w układzie gwiazda-trójkąt oraz sprężarek falownikowych.

W zakładce "Statystyki" znajduje się w menu głównym, dane są przedstawione w postaci wierszy z opisem parametrów oraz wartościami. Symbol ołówka przy wybranych wiersza oznacza że możliwe jest ręczne wprowadzenie wartości wybranych parametrów, wymagana jest w takim przypadku autoryzacja z poziomu producenta.

Nazwa parametru	Opis parametru
Całkowity czas pracy	Całkowity czas pracy silnika
Czas pracy pod obciążeniem	Całkowity czas sprężania
Średnie obciążenie	Stosunek czasu pracy pod obciążeniem do całkowitego
	czasu pracy
Liczba rozruchów silnika	Całkowita liczba rozruchów silnika
Średnia ilość rozruchów silni-	Średnia liczba rozruchów silnika na godzinę
ka	
Liczba załączeń zaworu Y	Całkowita liczba załączeń zaworu Y
Obciążenie 80% - 100% ^F	Całkowity czas pracy w danym przedziale obciążenia
Obciążenie 60% - 80% ^F	Całkowity czas pracy w danym przedziale obciążenia
Obciążenie 40% - 60% ^F	Całkowity czas pracy w danym przedziale obciążenia
Obciążenie 20% - 40% ^F	Całkowity czas pracy w danym przedziale obciążenia

Tabela 23: Parameti	y z zakładki	"Statystyki"
---------------------	--------------	--------------

F-Parametr dostępny tylko dla sprężarek wyposażonych w falownik

Ρ

Rysunek 32: Zakładka Statystyki

15. Planowanie pracy

Sterownik AirVision One wyposażony jest w funkcję planowania pracy sprężarki. Umożliwia to automatyczne włączanie i wyłączanie maszyny zgodnie z zaplanowanym wcześniej harmonogramem. Możliwe jest zapisanie w sumie do 5 niezależnych zdarzeń jednorazowych lub cyklicznych.

Zdarzenia jednorazowe są definiowane według konkretnych dat i godzin, natomiast zdarzenia cykliczne konfigurowane są według godzin na każdy dzień tygodnia.

Menu planowania pracy znajduje się w menu głównym oraz w parametrach użytkownika, pod nazwą "Planowanie pracy", w przypadku wejścia do menu poprzez menu główne, wymagane jest podanie hasła użytkownika lub serwisu.

Po przejściu do menu planowania pracy, na pierwszej pozycji znajduje się parametr "WŁ.", "WYŁ." pozwalający na włączenie lub wyłączenie pracy sterownika zgodnie z aktywnymi zdarzeniami, które są widoczne niżej w menu.

Każde ze skonfigurowanych zdarzeń przedstawione jest w postaci pola, z którego można odczytać podstawowe informacje o zdarzeniu, takie jak przedział czasowy zdarzenia, tryb pracy, oraz status zdarzenia (aktywowane lub dezaktywowane). Jeśli w polu wyświetlony jest komunikat "Utwórz zdarzenie", oznacza to że do danego pola nie zostało przypisane jeszcze żadne zdarzenie.

Rysunek 33: Główny widok menu "Planowanie pracy"

15.1. Konfiguracja zdarzenia

Każde ze zdarzeń konfigurowane jest za pomocą następujących parametrów:

- Stan zdarzenia
- Typ zdarzenia
- Tryb pracy
- Termin aktywności zdarzenia

	Zdarzenie 2			
	Stan zdarzenia	Aktywowane 🖉		
	Typ zdarzenia	Cykliczne 🖉		
	Tryb pracy	CONST 0		
	Termin aktywności zd Pn,Wt,Śr,Czw,Pt 06:00	arzenia 🖉		
6.4 bar		ZAPISZ ZDARZENIE		

Rysunek 34: Przykład konfiguracji zdarzenia pracy planowanej

Parametr "Stan zdarzenia" pozwala aktywować lub dezaktywować zdarzenie, jeżeli zdarzenie jest dezaktywowane, nie będzie wpływać na pracę planowaną, ale pozostanie na liście zdarzeń.

Parametr "Typ zdarzenia" określa czy zdarzenie jest cykliczne czy jednorazowe.

Parametr "Tryb pracy" definiuje tryb pracy w jakim będzie działać sprężarka w czasie trwania zdarzenia. Oprócz standardowych trybów pracy (AUTO i CONST) można również wybrać tryb pracy "STOP sprężarka zatrzymana".

Ostatnim parametrem konfiguracji zdarzenia jest parametr "Termin aktywności zdarzenia", który definiuje okres, w którym zdarzenie ma być aktywne.

Zależnie od wybranego typu zdarzenia, termin jego aktywności jest definiowany poprzez inny zestaw parametrów.

Zdarzenia cykliczne parametryzowane są za pomocą parametrów "Dni tygodnia", "Godzina rozpoczęcia" i "Godzina zakończenia", natomiast dla zdarzeń jednorazowych są to "Data rozpoczęcia", "Godzina rozpoczęcia", "Data zakończenia", "Godzina zakończenia".

	Termin aktywności zdarzenia 3						
	Dzień rozpoczęcia	25-05-2024	0				
	Godzina rozpoczęcia	07:00	0				
	Dzień zakończenia	27-05-2024	0				
	Godzina zakończenia	16:00	0				
6.4 bar							

Rysunek 35: Przykład konfiguracji terminu aktywności zdarzenia

Po wprowadzeniu wszystkich parametrów zdarzenia, należy je zapisać przyciskiem OK, po przejściu na pole "Zapisz zdarzenie".

Pole "Usuń zdarzenie" pozwala na usunięcie zdarzenia z listy.

15.2. Algorytm planowania pracy

Aby sprężarka działała zgodnie ze skonfigurowanymi zdarzeniami, praca planowana musi zostać aktywowana w menu "Planowanie pracy". W momencie, kiedy praca planowana jest aktywna, na ekranie wyświetli się komunikat "Praca planowana jest aktywna".

Ponadto, aby algorytm planowania pracy mógł sterować pracą sprężarki, wymagane jest wcześniejsze zezwolenie na start poprzez naciśnięcie przycisku "START" na sterowniku. Jeżeli zgodnie z zaplanowanymi zdarzeniami sprężarka nie powinna pracować w danej chwili, to po zezwoleniu na start, na widoku głównym interfejsu graficznego wyświetli się komunikat "Zatrzymanie przez planowanie pracy"

Algorytm pracy planowanej uwzględnia jedynie zdarzenia które są aktywowane.

UWAGA!

Zdarzenia jednorazowe mają większy priorytet niż zdarzenia cykliczne. Umożliwia to robienie "wyjątków" dla zdarzeń cyklicznych, np. w przypadku świąt państwowych. Jednocześnie zdarzenia, które są na wyższej pozycji na liście mają wyższy priorytet niż te na niższych pozycjach listy. Oznacza to, że w przypadku kiedy dwa lub więcej zaplanowanych zdarzeń będzie się nachodzić na siebie w czasie, sprężarka będzie pracować zgodnie ze zdarzeniem o wyższym priorytecie.

RESS compressoren 65

16. Praca sieciowa

Sterownik AirVision One może zarządzać jako sterownik nadrzędny grupą do 4 sprężarek (w tym sobą samym), wykorzystując jeden z dwóch dostępnych algorytmów: Sekwencyjny (**SEQ**) lub kaskadowy (**CAS**).

Wszystkie sterowniki w sieci muszą być podłączone między sobą poprzez porty RS-485 lub RS-485 ISO. Protokół komunikacyjny wykorzystany do pracy sieciowej to Modbus RTU.

Do pracy sieciowej oprócz sterownika AirVision One mogą zostać podłączone następujące sterowniki:

AirVision Touch

16.1. Widok pracy sieciowej

Widok pracy sieciowej jest dostępny tylko w sterowniku skonfigurowanym jako nadrzędny, aby włączyć widok pracy sieciowej należy przejść do zakładki **Praca sieciowa** w menu głównym lub z poziomu skrótów widoku głównego. Z poziomu sterownika nadrzędnego użytkownik zyskuje dostęp do podglądu statusu wszystkich sterowników w sieci.

Widok pracy sieciowej przedstawia wszystkie podłączone sterowniki podrzędne (oznaczone cyframi od 1 do 3) oraz sterownik nadrzędny (oznaczony literą "M").

Liczba widocznych sprężarek podrzędnych zależy od liczby sprężarek, jaka została skonfigurowana w sterowniku nadrzędnym. Każdy z kafelków w widoku pracy sieciowej umożliwia odczytanie aktualnych nastaw ciśnień na każdej ze sprężarek oraz statusu każdej ze sprężarek w formie krótkiego komunikatu. W przypadku wystąpienia błędu lub ostrzeżenia na dowolnej ze sprężarek w sieci, w polu jej kafelka wyświetli się ikona błędu lub ostrzeżenia.

	OOO Praca sieciowa	
	M Zatrzymana	Pu: 10.0 Pd: 8.5 bar
	1 Zatrzymana	Pu: 10.0 Pd: 8.5 bar
	2 Zatrzymana	Pu: 10.0 Pd: 8.5 bar
6.1 bar	WYŁ. Praca sieciowa jest w	yłączona

Nie jest możliwy podgląd widoku pracy sieciowej z poziomu sterownika podrzędnego.

Rysunek 36: Widok pracy sieciowej

16.2. Uruchomienie pracy sieciowej i zmiana nastaw sterowników podrzędnych

W celu uruchomienia algorytmu pracy sieciowej należy przejść do widoku pracy sieciowej na sterowniku nadrzędnym, a następnie włączyć ją przyciskiem wł./wył. obok napisu "Praca sieciowa jest: WYŁĄ-CZONA". W momencie włączenia algorytmu, napis zmieni treść na "Praca sieciowa jest:WŁĄCZONA". Aby sterownik nadrzędny mógł prawidłowo zarządzać zespołem sprężarek należy przed uruchomieniem pracy sieciowej na sprężarce nadrzędnej wcisnąć przycisk START na każdej ze sprężarek podrzędnych (Nie dotyczy to poprzednich generacji sterowników serii MS, te włączą się automatycznie). Wyłączenie algorytmu pracy sieciowej spowoduje zatrzymanie wszystkich sprężarek podrzędnych, jeżeli w międzyczasie na sprężarkach podrzędnych nie został wciśnięty przycisk STOP, ich ponowne uruchomienie wymaga jedynie ponownego włączenia przycisku uruchomienia algorytmu pracy sieciowej w widoku pracy sieciowej na sterowniku nadrzędnym.

W celu konfiguracji ciśnienia na dowolnym ze sterowników w sieci należy wybrać jego kafelek, a następnie wpisać odpowiednie wartości ciśnień.

16.3. Błędy i zdarzenia w pracy sieciowej

W przypadku wystąpienia błędu na jednej ze sprężarek podrzędnych, zostanie ona wyłączona automatycznie z pracy w algorytmie sterownia nadrzędnego. Przywrócenie takiej sprężarki do pracy w algorytmie nastąpi w momencie usunięcia usterki i potwierdzenia błędu na jej sterowniku.

Jeżeli błąd wystąpi na sterowniku nadrzędnym, sterownik nadrzędy zostanie wyłączony z algorytmu pracy nadrzędnej, jednakże wciąż będzie sterował pracą sprężarek podrzędnych.

Jeżeli połączenie z jednym lub więcej sterowników podrzędnych zostanie przerwane, w okienku statusu sprężarki podrzędnej wyświetli się komunikat "Błąd komunikacji", taka sprężarka zostanie wyłączona z algorytmu pracy nadrzędnej, jeśli jednak po stronie sprężarki podrzędnej nie wystąpią żadne dodatkowe błędy, sprężarka ta będzie działać zgodnie z ostatnimi otrzymanymi nastawami ciśnienia od sterownika nadrzędnego.

Oznacza to także, że w przypadku utraty komunikacji z siecią sterownika nadrzędnego, pozostałe sprężarki nie wyłączą się, lecz będą pracować zgodnie z ostatnimi otrzymanymi nastawami ciśnienia.

16.4. Algorytm pracy sekwencyjnej (SEQ)

Algorytm sekwencyjny przeznaczony jest do pracy sieciowej grupy sprężarek o zbliżonej mocy. Założeniem algorytmu jest równomierne rozłożenie czasu pracy pomiędzy wszystkie sprężarki w sieci. Odbywa się to poprzez rotację nastaw ciśnienia dociążenia (Pd) i odciążenia (Pu) co określony czas rotacji, który można skonfigurować przechodząc do zakładki:

Parametry użytkownika -> Praca sieciowa -> Konfiguracja.

W fazie rotacji nie dochodzi do zatrzymania poszczególnych sprężarek. Do zatrzymania/wystartowania sprężarki może dojść jedynie na skutek odniesienia aktualnego ciśnienia względem jej nowo nadanych granic Pu - Pd. W procedurze rotacji ciśnień biorą jedynie udział sprężarki aktywne.

Przykładowym, zalecanym ustawieniem granic ciśnień Pu - Pd w algorytmie sekwencyjnym są wykluczające się, skokowe przedziały. Przy takim rozkładzie sprężarka o najwyższym przedziale granic będzie wyłączana najpóźniej (po osiągnięciu wymaganego ciśnienia w sieci) oraz włączana najwcześniej, ponieważ ma najwyższą dolną granicę ciśnienia Pd.

Drugim przykładowym ustawieniem granic Pu - Pd w algorytmie sekwencyjnym jest nadanie sprężarkom identycznych górnych granic Pu oraz skokowych granic dolnych. W takiej sytuacji wszystkie sprężarki będą wyłączane jednocześnie, a włączane przy spadkach ciśnienia poniżej kolejnych dolnych granic Pd.

Przed rotacją		Po pierwszej rotacji		Po drugiej rotacji			cd.		
ID	Pd	Pu	ID	Pd	Pu	ID	Pd	Pu	
1	6.0	7.0	1	3.0	7.0	1	4.0	7.0	
2	5.0	7.0	2	6.0	7.0	2	3.0	7.0	
3	4.0	7.0	3	5.0	7.0	3	6.0	7.0	
4	3.0	7.0	4	4.0	7.0	4	5.0	7.0	

Sprężarkom zatrzymanym ręcznie lub na skutek wystąpienia na nich błędu krytycznego, automatycznie nadawane są najniższe granice ciśnień (przy włączonej funkcji automatycznej rekonfiguracji), a ich granice są przekazywane sprężarkom aktywnym o najniższych granicach Pu - Pd.

Przykładowo, jeżeli w przypadku 1. nastąpi ręczne zatrzymanie sprężarki o ID 2, to po rekonfiguracji, rozkład granic będzie wyglądał jak w sytuacji 2. Jeżeli sprężarka o ID 2 przy procedurze rotacji nadal będzie nieaktywna, to rozkład ciśnień będzie wyglądał jak w przypadku 3.

16.5. Algorytm pracy kaskadowej (CAS)

Algorytm pracy kaskadowej przeznaczony jest do pracy sieciowej grupy sprężarek o zróżnicowanej mocy. Algorytm ten zakłada, że najczęściej włączana i wyłączana będzie sprężarka o najmniejszej mocy. Sprężarka o największej mocy będzie uruchamiana jedynie w przypadkach dużego zapotrzebowania na powietrze w sieci.

Przykładowym, zalecanym ustawieniem granic Pu - Pd w algorytmie kaskadowym jest nadanie sprężarkom identycznych górnych granic Pu oraz skokowych granic dolnych (sytuacja 1). W takiej sytuacji wszystkie maszyny będą sprężały powietrze do osiągnięcia wymaganego ciśnienia w sieci, a następnie zostaną jednocześnie wyłączone. Przy małym zapotrzebowaniu na ciśnienie włączana będzie sprężarka o najmniejszej mocy (ID=4). Jeżeli pomimo jej pracy ciśnienie spadnie poniżej dolnej granicy sprężarki o ID=3, to ta sprężarka również zostanie włączona.

1. Wszystkie aktywne			2. 9	Spręża	arka II	D=2 nieaktywna	
ID	Pd	Pu	Мос	ID	Pd	Pu	Мос
1	3.0	7.0	120kW	1	4.0	7.0	120kW
2	4.0	7.0	100kW	2	3.0	7.0	100kW
3	5.0	7.0	50kW	3	5.0	7.0	50kW
4	6.0	7.0	20kW	4	6.0	7.0	20kW

W algorytmie kaskadowym granice ciśnienia Pu - Pd są na stałe przypisane do danego identyfikatora sprężarki. Nie występuje tu procedura rotacji (parametr czas rotacji nie jest brany pod uwagę).

A zatem przy ustawianiu granic ciśnień istotna jest ich kolejność względem ID. Przy włączonej funkcji automatycznej rekonfiguracji, sprężarkom zatrzymanym ręcznie lub na skutek wystąpienia błędu, automatycznie nadawane są najniższe granice ciśnienia Pu - Pd w sieci. Powoduje to przesunięcie niższych granic o jedną pozycję w górę. Przykładowo, jeżeli w sytuacji 1 wystąpi błąd krytyczny na sprężarce o ID=2, to po automatycznej rekonfiguracji, rozkład granic ciśnienia Pu - Pd będzie wyglądał jak w przypadku 2. Po przywróceniu sprężarki o ID=2 do pracy, rozkład granic powróci do stanu 1.

16.6. Konfiguracja sterownika nadrzędnego

W celu konfiguracji sterownika nadrzędnego do pracy w sieci należy w pierwszej kolejności skonfigurować parametry komunikacji portu RS-485. W sterowniku AirVision One są dostępne 2 niezależne porty RS-485, jeden z nich jest izolowany (RS-485 ISO). Dowolny z portów może zostać wykorzystany do pracy sieciowej sterowników.

Aby skonfigurować parametry wybranego portu RS-485 należy przejść do zakładki: **Parametry użyt**kownika -> Konfiguracja wejść/wyjść -> RS-485/RS-485 ISO.

Parametry komunikacji: Szybkość transmisji, parzystość oraz bity stopu powinny być skonfigurowane tak samo dla wszystkich urządzeń w sieci.

W przypadku dużych odległości pomiędzy sterownikami zaleca się ustawić niższe prędkości transmisji.

	RS-485		
	Szybkość transmisji	9600	0
	Parzystość	Brak	0
	Bity stopu	1	0
	Funkcja	Nadrzędna	0
6.1 bar			

Parametr "Funkcja RS-485" należy ustawić na "Nadrzędna".

Rysunek 37: Menu konfiguracji portu RS-485

W następnym kroku należy skonfigurować parametry pracy sieciowej. Aby to zrobić należy przejść do zakładki: **Parametry użytkownika -> Praca sieciowa -> Konfiguracja**.

Parametr "Praca jako sprężarka nadrzędna" należy ustawić na "Włącz", spowoduje to automatyczne przestawienie parametru "Tryb zdalny" na "NET".

W pozostałych parametrach należy wybrać liczbę sprężarek podrzędnych (Nie wliczając w to sprężarki nadrzędnej), algorytm pracy sterowania nadrzędnego (sekwencyjny lub kaskadowy).

Parametr "Opóźnienie załączenia pomiędzy sprężarkami podrzędnymi" określa opóźnienie uruchomienia kolejnych sprężarek w sieci i ma na celu ochronę sieci energetycznej przed przeciążeniem w wyniku rozruchu zbyt wielu sprężarek naraz.

Parametr "Czas rotacji" dotyczy tylko trybu sekwencyjnego i określa interwał, w jakim nastawy ciśnień będą zamieniane pomiędzy kolejnymi sprężarkami.

Parametry "Ciśnienie dociążenia/odciążenia dla sprężarki nadrzędnej" określają nastawy ciśnień dla sprężarki nadrzędnej.

Parametr "Automatyczna rekonfiguracja limitów ciśnień", jeżeli jest włączony, odpowiada za przeniesienie nastaw ciśnienia ze sprężarki, na której wystąpiła awaria, na sprężarkę, która działa prawidłowo.

W przypadku pracy sieciowej, w której uczestniczą sprężarki wyposażone w falownik, punkt pracy jest wspólny dla wszystkich sprężarek w sieci, konfiguruje się go w parametrze "Punkt pracy sieci". Nastawa ta jest przesyłana do wszystkich sprężarek podrzędnych wyposażonych w falownik.

1/3	Konfiguracja pracy sieciowej					
	Tryb zdalny	LOCAL				
	Limit czasu komunikacji ze sprężarką nadrzędną	15 s 🖉				
	Praca jako sprężarka nadrzędna	WYŁ.)				
•	Algorytm pracy sieciowej	SEQ 🖉				
6.1 bar	Liczba sprężarek podrzędnych	3 🖉				

Rysunek 38: Menu konfiguracji pracy sieciowej 1/3

Rysunek 39: Menu konfiguracji pracy sieciowej 2/3

Rysunek 40: Menu konfiguracji pracy sieciowej 3/3

Ostatnim krokiem parametryzacji sterownika nadrzędnego jest konfiguracja każdej ze sprężarek podrzędnych. Zakładki konfiguracji sprężarek podrzędnych są dostępne w:

Parametry użytkownika -> Praca sieciowa -> Sprężarka.

Liczba sprężarek do skonfigurowania zależy od wprowadzonej liczby sprężarek podrzędnych.

Każdą ze sprężarek podrzędnych konfiguruje się analogicznie, wpisując nastawy ciśnienia wybranej sprężarki w parametry "Ciśnienie odciążenia" i "Ciśnienie dociążenia".

W parametrze "Interfejs" należy wybrać, do którego portu RS-485 sterownika nadrzędnego podłączona jest dana sprężarka podrzędna ("RS-485" lub "RS-485 ISO").

Parametr "Adres Modbus" określa adres modbus, jaki został nadany danej sprężarce podrzędnej, należy go przepisać ze sterownika sprężarki podrzędnej po jego skonfigurowaniu.

Uwaga!

Adresy sterowników w obrębie pojedynczej sieci nie mogą się powtarzać. Każda ze sprężarek podrzędnych powinna mieć nadany inny adres.

	Praca sieciowa				
	Konfiguracja				
	Sprężarka 1				
	Sprężarka 2				
	Sprężarka 3				
6.1 bar					

Rysunek 41: Menu pracy sieciowej

	Konfiguracja sprężarki podrzędnej 1					
	Ciśnienie odciążenia	10.0 bar 🛛 🖉				
	Ciśnienie dociążenia	8.5 bar 🧷				
	Interfejs	RS-485 🖉				
	Adres modbus	2 🖉				
6.1 bar						

Rysunek 42: Menu konfiguracji sprężarki podrzędnej 1

16.7. Konfiguracja sterownika podrzędnego

W celu konfiguracji każdego ze sterowników podrzędnych AirVision One należy w pierwszym kroku skonfigurować port RS-485, do którego podłączona jest sieć. Aby to zrobić należy przejść do zakładki:

Parametry użytkownika -> Konfiguracja wejść/wyjść -> RS-485/RS-485 ISO.

Parametry komunikacji wybranego portu RS-485, czyli "Szybkość transmisji", "Parzystość" oraz "Bity stopu", należy skonfigurować identycznie jak na sterowniku nadrzędnym.

Parametr "Funkcja RS-485/RS-485 ISO" należy wybrać "Podrzędna"

Parametr "Adres modbus" należy wprowadzić dowolny adres, który będzie się pokrywać z wybraną sprężarką podrzędną skonfigurowaną w sterowniku nadrzędnym.

Uwaga!

Adresy sterowników w obrębie pojedynczej sieci nie mogą się powtarzać. Każda ze sprężarek podrzędnych powinna mieć nadany inny adres.

Cały proces należy powtórzyć na każdej ze sprężarek podrzędnych.

	RS-485					
	Szybkość transmisji	9600	0			
	Parzystość	Brak	0			
	Bity stopu	1	0			
	Funkcja	Nadrzędna	0			
6.1 bar						

Rysunek 43: Menu konfiguracji portu RS-485

wprowadzenia zmiany należy przejść do zakładki:

Parametry użytkownika -> Parametry pracy -> Tryby pracy.

	Tryby pracy					
	Tryb pracy		AUTO	0		
	Tryb zdalny		NET	0		
6.1 bar						

Rysunek 44: Menu konfiguracji trybu zdalnego
17. Web Serwer (System wizualizacji)

Sterownik AirVision One standardowo jest wyposażony w system wizualizacji (web serwer), umożliwiający monitoring sprężarki w czasie rzeczywistym, za pośrednictwem sieci lokalnej LAN.

Web serwer przedstawiony jest w postaci strony internetowej, strona hostowana jest bezpośrednio ze sterownika w sieci lokalnej, przez co nie jest wymagana instalacja żadnych programów, do prawidłowego działania wystarczy przeglądarka internetowa na komputerze z dostępem do sieci LAN, do której podłączony został sterownik.

Możliwe jest przeglądanie strony web serwera przez kilku użytkowników jednocześnie, z poziomu kilku komputerów.

Web serwer nie posiada możliwości zdalnej zmiany parametrów sterownika.

17.1. Web serwer - Opis interfejsu graficznego

Web serwer podzielony jest na wiele podstron odpowiadającym poszczególnym zakładką w sterowniku. Możliwości wielu z nich są rozszerzone na web serwerze.

Niezależnie od treści podstrony, którą obecnie przegląda użytkownik, zawsze widoczne pozostają pasek nawigacji po web serwerze oraz pasek górny.

Boczny pasek nawigacji pozwala przejść do dowolnej podstrony systemu wizualizacji, oraz wskazuje na której podstronie obecnie znajduje się użytkownik.

Lista podstron web serwera:

- Pulpit AirVision One
- Czujniki
- Zużycie
- Komunikaty
- Liczniki serwisowe
- Praca planowana
- Informacje

Rysunek 45: Boczny pasek informacyjny web serwer

Pasek górny pozwala na podgląd bazowych parametrów sprężarki niezależnie od podstrony, na której znajduje się użytkownik.

Lista parametrów widocznych na pasku górnym:

- Nazwa sprężarki
- Aktualne wskazanie ciśnienia
- Skrócony status sprężarki
- · Ikona informująca o działaniu wentylatora
- · Ikona silnika zmieniająca kolory analogicznie jak na sterowniku
- Data i godzina ze sterownika

Rysunek 46: Górny pasek informacyjny web serwer

Ρ

17.2. Web serwer - Pulpit AirVision One

Podstrona "Pulpit AirVision One" jest domyślnym widokiem web serwera, przedstawia wszystkie najważniejsze parametry dotyczące kompresora.

Lista parametrów widocznych na podstronie Pulpit AirVision One

- Wskazanie ciśnienia
- Aktualne nastawy ciśnienia
- Częstotliwość silnika
- Temperatura oleju
- Stan sprężarki
- Stan silnika
- Tryb pracy
- Lista aktywnych komunikatów
- Ikona aktywności pracy sieciowej
- Ikona aktywności pracy planowanej
- Ikona pracy wentylatora
- Ikona pracy osuszacza
- Ikona pracy podgrzewacza
- Ikona spustu kondensatu
- Podstawowe informacje o sprężarce i sterowniku

		6.7 bar Zatrzymany 🕑 08.46 14.05.2024
🖵 Pulpit	PULPIT	
Coujetki	Ciśnienie sieci Nastawy ciśnienia Stan sprężanki Ciśnienie odciążenia 10.0 bar	Praca sleciowa Praca planowana
<u>hii</u> Zużycie	6.7 bar Chinese docuparense 8.5 bar	
🖂 Komunikaty	Temperatura oleja 39°C	Wyłączona Wyłączona
Liczniki serwisowe	Tryb precy Stan skinka	98 Westyldsor wyw.ac/200vr de Osisizaic2
Praca planowana		South Kondensatu
O Informacje	Tryb automatyczny Silinic zatrzymany	I NEDOSTEPHY III NEDOSTEPHY
	balyan kenantarya Dala Godona Balan Komunikat	Timing a group annotation v200 Namer keyny stewards P800 Model stewards
		Numer songhe geleziki Naziva sopezaki Sociolo sosoriva Owlande holjbyć Proslavent Appene Panka Sp. 1 v.a.

Rysunek 47: Web serwer widok pulpitu

17.3. Web serwer - Czujniki

Podstrona "Czujniki" odpowiada zakładce "Czujniki" w sterowniku, wyświetlane są w niej jedynie wartości czujników skonfigurowanych w sterowniku.

Lista czujników dostępnych do podglądu na podstronie "Czujniki":

- Ciśnienie w sieci
- Ciśnienie oleju
- Temperatura oleju
- Temperatura silnika
- Prąd silnika
- Moc silnika
- Częstotliwość wyjściowa

17.4. Web serwer - Zużycie

Podstrona "Zużycie" przedstawia statystyki czasowe ze sterownika, rozszerzając je o wykres kołowy rozkładu pracy na dociążeniu i odciążeniu, lub w przypadku sprężarek wyposażonych w falownik, wykres słupkowy przedstawiający rozkład pracy na poszczególnych zakresach obciążenia.

17.5. Web serwer - Komunikaty

Podstrona "Komunikaty" pozwala na przeglądanie historii komunikatów (Błędy i ostrzeżenia), które wystąpiły na sterowniku w przeszłości lub są aktywne w danym momencie. Aktywne komunikaty wyróżnione są symbolem niebieskiej flagi. Web serwer umożliwia filtrowanie zdarzeń na liście po typie (błąd, ostrzeżenie, aktywne, nieaktywne) lub po dacie. Jest także możliwość wyszukiwania zdarzeń po nazwie.

17.6. Web serwer - Liczniki serwisowe

Podstrona "Liczniki serwisowe" przestawia aktywne na sterowniku liczniki serwisowe oraz ich wartości, dodatkowo wyświetlony jest także pasek postępu każdego licznika. Pasek postępu wskazuje 100% w przypadku zresetowanego licznika, wartość ta spada wraz z upływem godzin/zbliżaniem się daty następnego przeglądu.

17.7. Web serwer - Praca planowana

Podstrona "Praca planowana" przedstawia wszystkie skonfigurowane na sterowniku zdarzenia wraz z ich parametrami oraz statusem, z podziałem na zdarzenia jednorazowe oraz cykliczne.

17.8. Web serwer - Informacje

Podstrona "Informacje" powiela informacje z zakładki "Informacje" na sterowniku.

17.9. Uruchomienie i konfiguracja połączenia z web serwerem

W celu konfiguracji web serwera należy przejść do zakładki **Parametry użytkownika -> Konfiguracja wejść/wyjść -> Ustawienia IP**. Następnie należy wybierając z listy skonfigurować, w jaki sposób zostanie przypisany adres IP do sterownika w sieci lokalnej. Dostępne są tryby: Auto(DHCP) oraz tryb statyczny.

W trybie automatycznym adres IP zostanie przypisany automatycznie za pośrednictwem serwera DHCP działającego w sieci (jest to zależne od indywidualnej konfiguracji sieci lokalnej).

W trybie statycznym dostępna jest konfiguracja standardowych parametrów urządzenia sieciowego. Lista parametrów do konfiguracji w trybie statycznym:

- Adres IP
- Maska podsieci
- Brama

Uwaga!

Po każdej zmianie dokonanej w wyżej opisanej zakładce należy nacisnąć przycisk "ZAPISZ", w przeciwnym razie parametry nie zostaną zmienione.

Rysunek 48: Menu konfiguracji adresu IP

W celu sprawdzenia nadanego adresu IP należy przejść do zakładki "Informacje" dostępnej z poziomu głównego menu sterownika. Znajduje się tam także adres MAC urządzenia. Ρ

Rysunek 49: Zakładka "Informacje" z widocznym adresem IP oraz MAC

18. Ostrzeżenia i błędy

Sterownik informuje o występujących aktualnie błędach oraz ostrzeżeniach w postaci ikon na pasku boczym interfejsu użytkownika. Ikony pozostaną widoczne na ekranie do czasu, aż użytkownik potwierdzi zdarzenia w zakładce "Aktywne ostrzeżenia i błędy", jeżeli przyczyna wystąpienia danego zdarzenia zniknęła. Po potwierdzeniu komunikat zniknie z listy, jeżeli tak się nie stanie oznacza to, że przyczyna widocznego na liście błędu lub ostrzeżenia dalej występuje. Informacje o błędach są również wyświetlane w postaci komunikatu tekstowego na głównym widoku interfejsu, dotyczy to również błędów i ostrzeżeń wewnętrznych falowników, sterownik odczytuje komunikaty falownika i wyświetla je wraz z ich opisem. Komunikaty można podzielić według ich wpływu na pracę sprężarki:

Ostrzeżenie - nie wpływa na pracę sprężarki Błąd Krytyczny - awaryjne (natychmiastowe) zatrzymanie silnika Błąd Niekrytyczny - standardowe zatrzymanie silnika

W przypadku wystąpienia dowolnego błędu ponowny rozruch silnika nie będzie możliwy, dopóki błąd pozostanie aktywny.

18.1. Lista ostrzeżeń sterownika AirVision One

Kod błędu	Nazwa ostrzeżenia	Тур	Opis
W01	Konieczny przegląd	Ostrzeżenie	Nastąpiła data ustalona przez ser- wisanta, w której należy wykonać przegląd generalny.
W02	Zbliża się czas przeglądu	Ostrzeżenie	Zbliża się data ustalona przez ser- wisanta, w której należy przeprowa- dzić przegląd.
W03	Wysokie ciśnienie w sieci	Ostrzeżenie	Ciśnienie w sieci zbliża się do wartości maksymalnej ustawionej przez serwisanta.
W04	Niskie ciśnienie w sieci	Ostrzeżenie	Ciśnienie w sieci zbliża się do war- tości minimalnej ustawionej przez serwisanta.
W05	Odebrane wartości ciśnień są nieprawidłowe	Ostrzeżenie	Sterownik wyświetla informacje, iż wartości ciśnienia są nieprawidło- we.
W06	Zbliża się czas wymiany oleju	Ostrzeżenie	Zbliża się data ustalona przez ser- wisanta, w której należy wymienić olej.

Tabela 24: Lista ostrzeżeń sterownia AirVision One

Tabela 24: Lista ostrzeżeń sterownia AirVision One

Kod błędu	Nazwa ostrzeżenia	Тур	Opis
W07	Ostrzeżenie o wysokiej tem- peraturze oleju	Ostrzeżenie	Temperatura oleju zbliża się do wartości maksymalnej ustawionej przez serwisanta.
W08	Konieczna wymiana oleju	Ostrzeżenie	Nastąpiła data ustalona przez ser- wisanta, w której należy wymienić olej.
W09	Zbliża się czas wymiany filtra oleju	Ostrzeżenie	Zbliża się data ustalona przez ser- wisanta, w której należy wymienić filtr oleju.
W10	Konieczny przegląd filtra ole- ju	Ostrzeżenie	Nastąpiła data ustalona przez ser- wisanta, w której należy wykonać przegląd filtra oleju.
W11	Błąd filtra oleju [OF]	Ostrzeżenie	Czujnik filtra oleju zgłasza, że wy- stąpił błąd.
W12	Zbliża się czas wymiany se- paratora oleju	Ostrzeżenie	Zbliża się data ustalona przez ser- wisanta, w której należy wymienić separator oleju.
W13	Konieczny przegląd filtra se- paratora oleju	Ostrzeżenie	Nastąpiła data ustalona przez ser- wisanta, w której należy wykonać przegląd filtra separatora oleju.
W14	Błąd separatora [SEP]	Ostrzeżenie	Czujnik separatora zgłasza, że wy- stąpił błąd.
W15	Zbliża się czas wymiany filtra powietrza	Ostrzeżenie	Zbliża się data ustalona przez ser- wisanta, w której należy wymienić filtr powietrza.
W16	Konieczny przegląd filtra po- wietrza	Ostrzeżenie	Nastąpiła data ustalona przez ser- wisanta, w której należy wykonać przegląd filtra powietrza.
W17	Błąd filtra powietrza [AF]	Ostrzeżenie	Czujnik filtru powietrza zgłasza, że wystąpił błąd.
W20	Zbliża się czas sprawdzenia naciągu pasa	Ostrzeżenie	Zbliża się data ustalona przez ser- wisanta, w której należy sprawdzić naciąg pasa.
W21	Konieczne sprawdzenie na- ciągu pasa	Ostrzeżenie	Nastąpiła data ustalona przez ser- wisanta, w której należy sprawdzić naciąg pasa.
W24	Brak gotowości osuszacza	Ostrzeżenie odnawialne	Osuszacz nie jest gotowy do pracy.

Tabela 24: Lista ostrzeżeń sterownia AirVision One

Kod błędu	Nazwa ostrzeżenia	Тур	Opis
W25	Ostrzeżenie o baterii	Ostrzeżenie	Przez problem z baterią, sterownik
			nie zapamiętuje daty.
W26	Niski poziom naładowania	Ostrzeżenie	Bateria sterownika zbliża się do roz-
	baterii sterownika		ładowania.
W27	Krytycznie niski poziom nała-	Ostrzeżenie	Bateria sterownika za chwilę się
	dowania baterii sterownika		rozładuje.
W28	Zwarcie przekładnika prądo-	Ostrzeżenie	Czujnik został źle podłączony, bądź
	wego		jakaś część została uszkodzona.
W29	Brak przekładnika prądowego	Ostrzeżenie	Sterownik wyświetla informacje, że
			sprężarka nie posiada podłączone-
			go przekładnika prądowego.
W34	Błąd komunikacji pracy sie-	Ostrzeżenie	Sterownik wyświetla informacje, że
	ciowej		wystąpił problem z pracą sieciową.
W35	Błąd komunikacji sprężarki	Ostrzeżenie	Sprężarka podrzędna 1 nie jest pod-
	podrzędnej 1		łączona do sieci, bądź wystąpił ja-
			kiś błąd uniemożliwiający połącze-
			nie.
W36	Błąd komunikacji sprężarki	Ostrzeżenie	Sprężarka podrzędna 2 nie jest pod-
	podrzędnej 2		łączona do sieci, bądź wystąpił ja-
			kiś błąd uniemożliwiający połącze-
			nie.
W37	Błąd komunikacji sprężarki	Ostrzeżenie	Sprężarka podrzędna 3 nie jest pod-
	podrzędnej 3		łączona do sieci, bądź wystąpił ja-
			kiś błąd uniemożliwiający połącze-
			nie.
W40	Praca sieciowa została wy-	Ostrzeżenie	Na sterowniku nadrzędnym zosta-
	łączona na sterowniku nad-		ła wyłączona praca sieciowa, bądź
	rzędnym		utracił on połączenie.
W41	Licznik użytkownika 1 ko-	Ostrzeżenie	Nastąpiła data ustalona przez ser-
	nieczny przegląd		wisanta, w której należy wykonać
			przegląd licznika użytkownika 1.
W42	Licznik użytkownika 2 ko-	Ostrzeżenie	Nastąpiła data ustalona przez ser-
	nieczny przegląd		wisanta, w której należy wykonać
			przegląd licznika użytkownika 2.
W43	Licznik użytkownika 1 zbliża	Ostrzeżenie	Zbliża się data ustalona przez ser-
	się czas przeglądu		wisanta, w której należy wykonać
			przegląd generalny.

Ρ

Kod błędu	Nazwa ostrzeżenia	Тур	Opis
W44	Licznik użytkownika 2 zbliża	Ostrzeżenie	Zbliża się data ustalona przez ser-
	się czas przeglądu		wisanta, w której należy wykonać
			przegląd generalny.
W45	Ostrzeżenie falownika	Ostrzeżenie	Na falowniku wystąpiło ostrzeże-
			nie.
W48	Konieczne nasmarowanie ło-	Ostrzeżenie	Licznik serwisowy nasmarowania
	żysk silnika		łożysk silnika przekroczył ustawio-
			ną wartość.
W49	Zbliża się czas nasmarowa-	Ostrzeżenie	Ostrzeżenie o zbliżającym się upły-
	nia łożysk silnika		nięciu licznika serwisowego smaro-
			wania łożysk.

Tabela 24: Lista ostrzeżeń sterownia AirVision One

18.2. Informacje o ostrzeżeniach falownika DANFOSS

Tabela 25: Lista ostrzeżeń falownika DANFOSS

Kod błędu	Opis błędu
W1	Niskie napięcie 10V
W2	Błąd Live zero
W3	Brak silnika
W4	Utrata fazy zasilającej
W5	Wysokie napięcie obwodu DC
W6	Niskie napięcie obwodu DC
W7	Przepięcie DC
W8	Napięcie DC poniżej dopuszczalnego poziomu
W9	Przeciążenie inwertera
W10	Przekroczenie temperatury przy przeciążeniu silnika
W11	Nadmierna temperatura termistora silnika
W12	Ograniczenie momentu
W13	Przetężenie
W14	Błąd uziemienia
W17	Time-out słowa sterującego
W22	Hamulec mechaniczny aplikacji dźwigowych
W23 W24	Błąd wentylatora wewnętrznego zewnętrznego
W25	Zwarcie rezystora hamowania
W26	Ograniczenie mocy rezystora hamowania
W27	Błąd czoppera hamulca

Kod błędu	Opis błędu
W28	Kontrola hamulca zakończyła się niepowodzeniem
W34	Błąd magistrali komunikacyjnej
W36	Błąd opcji
W47	Niskie zasilanie 24V
W49	Ograniczenie prędkości
W59	Ograniczenie prądu
W62	Maksymalne ograniczenie częstotliwości wyjściowej
W64	Ograniczenie napięcia
W65	Przekroczenie temperatury karty sterującej
W66	Niska temperatura radiatora
W68	Bezpieczny stop włączony
W69	Temperatura karty mocy
W74	Termistor PTC
W87	DC auto hamowanie
W89	Poślizg hamulca mechanicznego
W90	Utrata sygnału enkodera
W93	Suchobieg pompy
W94	Funkcja End of Curve
W95	Zerwany pas
W127	EMF zbyt wysokie
W158	Osiągnięto limit mocy
W219	Odwrócona blokada spręzarki
Brak	Opóźniony start
Brak	Opóźniony stop
Brak	Wysoki poziom rozładowania
Brak	Niedociążenie multi-motor
Brak	Przeciążenie multi-motor
Brak	Błąd bezpieczeństwa
Brak	Ostrzeżenie KTY
Brak	Ostrzeżenie ECB
Brak	Osiągnięto limit mocy silnika

Tabela 25: Lista ostrzeżeń falownika DANFOSS

18.3. Informacje o ostrzeżeniach falownika YASKAWA

Ρ

Tabela 26: Lista ostrzeżeń falownika YASKAWA

Kod błędu	Opis błędu
dEv	Przekroczona odchyłka prędkości
CALL	Błąd transmisji komunikacji szeregowej
oH2	Przegrzanie przetwornicy
oH3	Przegrzanie silnika
DC Uv	Za małe napięcie zasilania

18.4. Informacje o ostrzeżeniach falownika Delta

Tabela 27: Lista ostrzeżeń falownika Delta

Kod błędu	Opis błędu
CE1	Błąd kodu funkcji Modbus
CE2	Błędny adres danych Modbus
CE3	Błąd danych Modbus
CE4	Błąd komunikacji Modbus
CE10	Limit czasu transmisji Modbus
oH1	IGBT jest przegrzany ponad poziom ochrony
oH2	Przegrzanie kluczowych elementów falownika
uC	Niski prąd
oSPd	Ostrzeżenie o przekroczeniu prędkości
dAvE	Ostrzeżenie o odchyłce przekroczenia prędkośći
PHL	Ostrzeżenie o utracie fazy wejściowej
ot1	Prąd wyjściowy przekroczył poziom wykrywania przekroczenia momen-
	tu obrotowego
ot2	Prąd wyjściowy przekroczył poziom wykrywania przekroczenia momen-
	tu obrotowego
oH3	Przegrzanie silnika
OPHL	Utrata fazy wyjściowej

18.5. Informacje o ostrzeżeniach falownika ABB

Tabela 28: Lista ostrzeżeń falownika ABB

Kod błędu	Opis błędu
0xA2B1	Przetężenie
0xA2B3	Zwarcie doziemne

Kod błędu	Opis błędu
0xA2B4	Zwarcie
0xA2BA	Przeciążenie IGBT
0xA3A1	Przepięcie obwodu IGBT
0xA3A2	Niewystarczające napięcie obwodu DC
0xA3A3	Nie naładowano obwodu DC
0xA490	Niepoprawna konfiguracja czujnika temperatury
0xA491	Temperatura zewnętrzna 1
0xA4A0	Temperatura modułu sterującego
0xA4A1	Nadmierna temperatura IGBT
0xA4A9	Chłodzenie
0xA4B0	Nadmierna temperatura
0xA4B1	Nadmierna różnica tempeartur
0xA4B2	Temperatura IGBT
0xA581	Błąd wentylatora
0xA582	Brak wentylatora pomocniczego
0xA5A0	Bezpieczne wyłączenie momentu
0xA5F0	Sprężenie zwrotne od ładowania
0xA6A4	Wartość znamionowa silnika
0xA6A5	Brak danych silnika
0xA780	Utyk silnika
0xA792	Rezystor hamowania
0xA793	Nadmierna temperatura rezystora hamowania
0xA79C	Nadmierna temperatura IGBT czopera hamowania
0xA7A2	Błąd otwarcia hamulca mechanicznego
0xA7CE	Utrata komunikacji EFB

Tabela 28: Lista ostrzeżeń falownika ABB

18.6. Lista błędów sterownika AirVision One

Kod błędu	Nazwa ostrzeżenia	Тур	Opis
E01	Błąd asymetrii zasilania	Błąd krytyczny	Przesunięcie fazowe zasilania.
		(możliwy auto re-	
		start)	
E02	Błąd kolejności faz	Błąd krytyczny	Wykryto zamienioną kolejność faz.
E03	Błąd termika	Błąd krytyczny	Przekroczono temperaturę silnika.

Tabela 29: Lista błędów sterownika AirVision One

Tabela 29: Lista błędów sterownika AirVision One	Tabela 29: Lista	błedów sterownika	AirVision One
--	------------------	-------------------	---------------

Kod błędu	Nazwa ostrzeżenia	Тур	Opis
E04	Zbyt wysokie ciśnienie w sieci	Błąd krytyczny	Sterownik wyświetla informacje, że wystąpiło zbyt wysokie ciśnienie.
E05	Brak czujnika ciśnienia w sie- ci	Błąd krytyczny	Sterownik wyświetla informacje, że wystąpił problem z czujnikiem ci- śnienia.
E06	Zwarcie czujnika ciśnienia w sieci	Błąd krytyczny	Czujnik został źle podłączony, bądź jakaś część została uszkodzona.
E07	Nie wybrano czujnika ciśnie- nia	Błąd krytyczny	Należy wybrać czujnik ciśnienia.
E08	Zbyt wysoka temperatura ole- ju	Błąd krytyczny	Sterownik wyświetla informacje, że wystąpiła zbyt wysoka temperatura oleju.
E09	Za niska temperatura oleju	Błąd odnawialny	Sprężarka nie może prawidłowo pracować, ponieważ temperatura oleju jest zbyt niska.
E10	Zbyt wolny przyrost tempera- tury oleju	Błąd krytyczny	Temperatura oleju rośnie zbyt wol- no, by sprężarka prawidłowo mogła pracować.
E11	Zwarcie czujnika temperatury oleju	Błąd krytyczny	Czujnik został źle podłączony, bądź jakaś część została uszkodzona.
E12	Brak czujnika temperatury oleju	Błąd krytyczny	Sterownik wyświetla informacje, że problem z czujnikiem temperatury oleju.
E13	Zbyt niski prąd silnika po star- cie	Błąd krytyczny	Prąd dochodzący do silnika jest za niski po starcie by utrzymać prawi- dłową pracę sprężarki.
E14	Zbyt duży prąd silnika	Błąd krytyczny	Prąd dochodzący do silnika jest zbyt wysoki.
E15	Zanik zasilania	Błąd odnawialny	Zasilanie otrzymało nieodpowiedni poziom napięcia.
E16	Zbyt wysoka temperatura sil- nika	Błąd krytyczny	Sterownik wyświetla informacje, że wystąpiła zbyt wysoka temperatura silnika.
E17	Brak czujnika temperatury sil- nika	Błąd krytyczny	Sterownik wyświetla informacje, że problem z wentylatorem.
E18	Zwarcie czujnika temperatury silnika	Błąd krytyczny	Czujnik został źle podłączony, bądź jakaś część została uszkodzona.

Tabela 29: Lista błędów sterownika AirVision One

18.7. Błędy falownika DANFOSS

Kod błędu	Rodzaj błędu	Opis błędu
A2	Błąd krytyczny	Błąd Live zero
A4	Błąd krytyczny	Utrata fazy zasilającej
A7	Błąd krytyczny	Przepięcie DC
A8	Błąd krytyczny	Napięcie DC poniżej dopuszczalnego poziomu
A9	Błąd krytyczny	Przeciążenie inwertera
A10	Błąd krytyczny	Przekroczenie temperatury przy przeciążeniu silnika
A11	Błąd krytyczny	Nadmierna temperatura termistora silnika
A12	Błąd krytyczny	Ograniczenie momentu
A13	Błąd krytyczny	Przetężenie
A14	Błąd krytyczny	Błąd uziemienia
A16	Błąd krytyczny	Zwarcie
A17	Błąd krytyczny	Time-out słowa sterującego
A22	Błąd krytyczny	Hamulec mechaniczny aplikacji dźwigowych
A23	Błąd krytyczny	Błąd wentylatora
A25	Błąd krytyczny	Zwarcie rezystora hamowania
A26	Błąd krytyczny	Ograniczenie mocy reezystora hamowania
A27	Błąd krytyczny	Błąd czoppera hamulca
A28	Błąd krytyczny	Kontrola hamulca zakończyła się niepowodzeniem
A30	Błąd krytyczny	Brak fazy U silnika
A31	Błąd krytyczny	Brak fazy V silnika
A32	Błąd krytyczny	Brak fazy W silnika
A33	Błąd krytyczny	Błąd układu wstępnego ładowania w fazie rozruchu
A34	Błąd krytyczny	Błąd magistrali komunikacyjnej
A36	Błąd krytyczny	Awaria zasilania
A38	Błąd krytyczny	Błąd wewnętrzny
A46	Błąd krytyczny	Zasilanie karty mocy
A47	Błąd krytyczny	Niskie zasilanie 24 V
A48	Błąd krytyczny	Niskie zasilanie 1,8 V
A49	Błąd krytyczny	Ograniczenie prędkości
A57	Błąd krytyczny	Błąd wewnętrzny AMA
A59	Błąd krytyczny	Ograniczenie prądu
A60	Błąd krytyczny	Blokada zewnętrzna
A63	Błąd krytyczny	Słaby hamulec mechaniczny
A65	Błąd krytyczny	Przekroczenie temperatury karty sterującej
A67	Błąd krytyczny	Konfiguracja opcjonalnego modułu uległa zmianie

Tabela 30: Lista błędów falownika DANFOSS

Kod błędu	Rodzaj błędu	Opis błędu
A68	Błąd krytyczny	Bezpieczny stop włączony
A69	Błąd krytyczny	Temperatura karty mocy
A70	Błąd krytyczny	Nieprawidłowa konfiguracja FC
A72	Błąd krytyczny	Niebezpieczna awaria
A74	Błąd krytyczny	Termistor PTC
A80	Błąd krytyczny	Przetwornica częstotliwości sprowadzona do nastaw
		fabrycznych
A83	Błąd krytyczny	Nieprawidłowa kombinacja opcji
A84	Błąd krytyczny	Brak opcji bezpieczeństwa
A90	Błąd krytyczny	Monitor sprzężenia zwrotnego
A94	Błąd krytyczny	Koniec krzywej
A95	Błąd krytyczny	Uszkodzony pas silnika
A99	Błąd krytyczny	Wirnik zablokowany
Brak	Błąd krytyczny	Błąd KTY
Brak	Błąd krytyczny	Błąd ECB
Brak	Błąd krytyczny	Brak informacji o przepływie lub ciśnieniu
Brak	Błąd krytyczny	Błąd startu
Brak	Błąd krytyczny	Brak przepływu

Tabela 30: Lista błędów falownika DANFOSS

18.8. Błędy falownika YASKAWA

Tabela 31: Lista błędów falownika YASKAWA

Kod błędu	Rodzaj błędu	Opis błędu
Uv1	Błąd krytyczny	Zbyt małe napięcie
SC	Błąd krytyczny	Zwarcie wyjścia lub błąd IGBT
GF	Błąd krytyczny	Błąd uziemienia
оС	Błąd krytyczny	Przekroczenie prądu
ov	Błąd krytyczny	Przekroczenie napięcia
оН	Błąd krytyczny	Przegrzanie radiatora
oH1	Błąd krytyczny	Przegrzanie radiatora
oL1	Błąd krytyczny	Przeciążenie silnika
oL2	Błąd krytyczny	Przeciążenie napędu
PF	Błąd krytyczny	Zanik fazy wejściowej
LF	Błąd krytyczny	Zanik fazy wyjściowej
oH4	Błąd krytyczny	Przegrzanie silnika 2 (wejście PTC)

Kod błędu	Rodzaj błędu	Opis błędu
CE	Błąd krytyczny	Awaria komunikacji MEMOBUS/Modbus
EF1	Błąd krytyczny	Awaria zewnętrzna (wejścia S1 do S6)
SCF	Błąd krytyczny	Błąd układu bezpieczeństwa
oH3	Błąd krytyczny	Przegrzanie silnika 1 (wejście PTC)

Tabela 31: Lista błędów falownika YASKAWA

18.9. Błędy falownika Delta

Tabela 32: Lista błędów falownika Delta

Kod błędu	Opis błędu
ocA	Przetężenie podczas przyśpieszania
ocd	Przetężenie podczas hamowania
ocn	Przetężenie podczas pracy pracy w stanie ustalonym
GFF	Błąd uziemienia
000	Przepięcie IGBT
ocS	Przetężenie w czasie postoju
ovA	Przepięcie w szynie DC przy stałej prędkości
ovd	Przepięcie na szynie DC podczas hamowania
ovn	Przepięcie na szynie DC przy stałej prędkości
ovS	Przepięcie na szynie DC w stanie zatrzymania
LvA	Podczas przyśpieszania napięcie szyny DC jest mniejsze niż Pr. 06-00
Lvd	Podczas hamowania napięcie szyny DC jest mniesjze niż Pr. 06-00
Lvn	Przy stałej prędkości napięcie szyny DC jest mniejsze niż Pr. 06-00
LvS	W stanie zatrzymania napięcie szyny DC jest mniejsze niż Pr. 06-00
OrP	Utrata fazy
oH1	IGBT jest przegrzany ponad poziom ochrony
oH2	Przegrzanie kluczowych elementów falownika
tH1o	Błąd zabezpieczenia termicznego IGBT
tH2o	Błąd kondensatora
oL	Przeciążenie. Falownik wykrywa nadmierny prąd na wyjściu
oH3	Przegrzanie silnika
ot1	Prąd wyjściowy przekroczył poziom wykrywania przekroczenia momen-
	tu obrotowego
ot2	Prąd wyjściowy przekroczył poziom wykrywania przekroczenia momen-
	tu obrotowego
uC	Wykryty niski prąd

Kod błędu	Opis błędu
cd1	Błąd prądu fazy U
cd2	Błąd prądu fazy V
cd3	Błąd prądu fazy W
Hd0	Błąd sprzętowy CC (Zacisk prądowy)
Hd1	Błąd sprzętowy OC
Hd2	Błąd sprzętowy OV
Hd3	Błąd sprzętowy OCC
EF	Błąd zewnętrzny
EF1	Zatrzymanie awaryjne
CE1	Błąd kodu funkcji Modbus
CE2	Błędny adres danych Modbus
CE3	Błąd danych Modbus
CE4	Błąd komunikacji Modbus
CE10	Limit czasu transmisji Modbus
bF	Błąd tranzystora hamulca
S1	Zatrzymanie awaryjne
BRK	Błąd hamulca zewnętrznego
OPLH	Utrata fazy wyjściowej
oL3	Zabezpieczenie przeciążeniowe przy niskiej częstotliwości

Tabela 32: Lista błędów falownika Delta

18.10. Błędy falownika Inovance

Tabela 33: Lista błędów falownika Inovance

Kod błędu	Opis błędu
Err02	Przekroczenie prądu podczas przyśpieszania
Err03	Przekroczenie prądu podczas hamowania
Err04	Przekroczenie prądu podczas pracy ze stałą prędkością
Err05	Przekroczenie napięcia podczas przyśpieszania
Err06	Przekroczenie napięcia podczas hamowania
Err07	Przekroczenie napięcia podczas pracy ze stałą prędkością
Err08	Usterka zasilania sterowania
Err09	Zbyt niskie napięcie
Err10	Przeciążenie falownika
Err11	Przeciążenie silnika
Err12	Brak fazy wejściowej

Kod błędu	Opis błędu
Err13	Brak fazy wyjściowej
Err14	Przegrzanie modułu IGBT
Err15	Błąd zewnętrzny
Err16	Błąd komunikacji
Err17	Błąd styku
Err18	Błąd wykrycia prądu
Err19	Błąd podczas autotuningu
Err20	Błąd enkodera
Err21	Błąd odczytu pamięci EEPROM
Err22	Awaria falownika
Err23	Zwarcie do uziemienia
Err26	Skumulowany czas pracy osiągnięty
Err29	Skumulowany czas zasilania osiągnięty
Err30	Brak zewnętrznego obciążenia silnika
Err31	Brak sygnału PID podczas pracy
Err40	Pik prądowy
Err41	Błąd przełączania silnika podczas pracy
Err42	Zbyt duże odchylenie prędkości
Err43	Przekroczenie dopuszczalnej prędkości silnika
Err45	Przekroczenie dopuszczalnej temperatury silnika

Tabela 33: Lista błędów falownika Inovance

18.11. Błędy falownika ABB

Tabela 34: Lista błędów falownika ABB

Kod błędu	Opis błędu
0x2310	Przetężenie
0x2330	Zwarcie doziemne
0x2340	Zwarcie
0x2381	Przeciążenie tranzystora IGBT
0x3130	Utrata fazy wejściowej
0x3181	Błąd okablowania/uziemienia
0x3210	Przepięcie łącza DC
0x3220	Niedostateczne napięcie łącza DC
0x3381	Utrata fazy wyjściowej
0x4110	Temperatura karty sterowania

Tabela 34: Lista błędów falownika ABB

Kod błędu	Opis błędu
0x4210	Nadmierna temperatura IGBT
0x4290	Chłodzenie
0x42F1	Temperatura IGBT
0x4310	Nadmierna temperatura
0x4380	Nadmierna różnica temperatur
0x4981	Temperatura zewnętrzna 1
0x4982	Temperatura zewnętrzna 2
0x5080	Uszkodzony wentylator
0x5081	Uszkodzony wentylator pomocniczy
0x5090	Błąd urządzenia bezpiecznego wyłączania momentu
0x5091	Bezpieczne wyłączanie momentu
0x5094	Temperatura obwodu pomiarowego
0x5089	Błąd obwodu SMT
0x5098	Błąd komunikacji I/O
0x50A0	Wentylator
0x5682	Utrata jednostki mocy
0x5691	Obwód pomiarowy ADC
0x5692	Błąd zasilania karty jednostki mocy
0x5693	Obwód pomiarowy DFF
0x5696	Sprężenie zwrotne od stanu jednostki mocy
0x5697	Sprężenie zwrotne od ładowania
0x5698	Nieznany błąd sprężenia zwrotnego
0x64B1	Wewnętrzny błąd SSW
0x6681	Utrata komunikacji EFB
0x7121	Utyk silnika
0x7181	Rezystor hamowania
0x7183	Nadmierna temperatura rezystora hamowania
0x7184	Okablowanie rezystora hamowania
0x7191	Zwarcie czopera rezystora hamowania
0x7192	Nadmierna temperatura IGBT czopera hamowania
0x7310	Za duża prędkość
0x73F0	Za duża częstotliwość
0x9081	Zewnętrzny błąd 1
0xFA81	STO 1
0xFA82	STO 2

19. Wymiary sterownika

Rysunek 50: Rysunek obudowy sterownika